조립제법
조립제법(組立除法, Synthetic division)이란 다항식을 내림차순으로 정리하여 계수들만 표기하는 간단한 계수들의 조립에서 간단한 곱셈과 덧셈으로만 이루어지는 적은 계산을 통해 다항식의 긴 나눗셈(Polynomial long division)을 보다 효율적이고 간단하게 수행하는 방법이다.
어떤 다항식을 특별히 일차식으로 나눗셈을 할 경우,Ruffini의 규칙(Ruffini's rule)이라 한다.이 규칙은 나누는 수(일차식)의 상수항의 부호에 (-1)을 곱하여 그 수를 중심으로 삼아, 뺄셈을 덧셈과 곱셈형식으로 전환시키는 원리를 지니고있다. 이 원리를 토대로 조립제법은 직접하는 다항식의 나눗셈의 뺄셈과정보다 더 익숙한 덧셈과 곱셈과정만으로 답을 추구할 수 있다는 의의를 지니고 있다.
이 부분에서 정의한 조립제법은 최고차항의 계수가 1인 다항식으로 나눌 때만 가능하다. 따라서 최고차항의 계수가 1이 아닌 경우는 1로 변형하여 조립제법을 한 다음, 구해진 몫의 계수를 조정하는 별도의 계산이 필요할 수 밖에 없다. 예를 들어서 최고차항의 계수가 2일 경우에는 그 식을 2로 나눠서 조립제법을 한 다음, 그 몫의 검산식의 양변에 2를 곱해주는 것이다.
조립제법의 뜻 풀이
조립제법(Synthetic division)을 영어로 직역하면 (종합적으로) 합성한 나눗셈을 의미하는데, 이는 나누어지는 다항식(피제수)의 각 항들을 내림차순으로 정리하여 계수들만 정렬시키고, 나눌 다항식(제수)의 상수항에 (-1)을 곱함으로써 부호를 바꾼 항을 왼쪽 칸에 배열시켜 계수들을 합성시키는 이 과정에 초점을 맞춰이름을 지었다고 할 수 있다.
조립제법(組立除法)은 Synthetic division를 한자어로 번역한 것으로, 의미는 대체적으로 같다. 피제수와 제수의 각 계수들을 특정하게 배열(組)하여 알맞게 조립제법의 형태를 세우고(立) 이 형식으로 나눗셈을 수행하는 것(除)을 의미한다.
조립제법의 이름은 조립제법을 하는 방법에 초점을 두어 정의되었다. 무엇보다 간편한 나눗셈을 수행하기 위해, 조립제법을 하는 방법을 강조하고있는데에 초점을 둔 것이다.
일차항 계수가 1인 일차식으로 나누기의 예
다음 나눗셈을 수행하려고 한다.
먼저 피제수의 모든 계수를 내림차순으로 쓴다. 이때, 보이지 않는 항까지 모두 써야 한다. (이 예에서는 일차식의 계수에 해당한다)
제수의 계수의 부호를 바꾼다.
제수의 최고차항을 제외한 나머지 계수를 세로줄의 왼쪽에 쓴다.
첫 번째 계수는 그대로 내려온다.
그 다음 맨 좌측선 너머에 쓴 수(여기서는 3)와 내려온 계수를 곱하여 그 피제수의 다음 계수 아래쪽에 쓴다.
같은 열에 위치한 가로선 위쪽의 이 값을 더하여 가로선 아래쪽에 쓴다.
이전의 두 단계를 반복하여 마지막까지 쓴다.
일차식으로 나누었으므로, 가로줄 아래쪽에 나열된 수 중에서 가장 우측의 수는 나머지를 의미하고, 나머지 수들은 내림차순으로 몫의 계수들을 의미하게 된다. 그리하여 나눗셈의 결과는 다음과 같음을 알 수 있다.[1]
일차항 계수가 1이 아닌 일차식으로 나누기의 예
다음 나눗셈을 수행하려고 한다.
먼저 피제수의 모든 계수를 내림차순의 순서로 쓴다. 이때, 보이지 않는 항까지 모두 써야 한다. (이 예에서는 일차식의 계수에 해당한다)
나누는 식의 상수항을 반대 부호로 하여 세로줄의 왼쪽에 쓴다. 나누는 식의 최고차항 계수 2는 부호를 바꾸지 않고 나누기 기호 /를 그 좌측에 붙여서(즉 /2 기호로 히여) 가로줄 밑, 세로줄 바로 좌측에 적어준다.
첫 번째 계수는 그대로 내려온다. 그대로 내려온 것을 2로 나누어(즉 /2 하여) 그 밑에 적는다.
앞에서 마지막에 적었던 1/2에 3을 곱하여 다음 열의 가로줄 바로 위에 적어 준다.
방금 적었던 3/2은 그 위의 -12와 합한 값을 가로 줄 바로 밑에 적어 주고, 또 이를 /2 하여 또 바로 그 밑에 적어준다.
앞에서 마지막에 적었던 -21/4에 3을 곱하여 다음 열의 가로줄 바로 위에 적어 준다.
방금 적었던 -63/4은 그 위의 0과 합한 값을 가로 줄 바로 밑에 적어 주고, 또 이를 /2 하여 또 바로 그 밑에 적어준다.
이전의 단계를 계속 반복한다. 마지막 단계에서는 /2(나누기 2)를 하지 않는다.
일차식 2x - 3으로 나누었으므로, 수평줄 바로 아래쪽에 나열된 수 중에서 가장 우측의 수 -525/8은 나머지를 의미하고, 수평줄의 아래 아래에 놓인 수들(즉 가장 밑에 놓인 수들)은 몫의 내림차순 계수들을 의미하게 된다. 그리하여 나눗셈의 결과는 다음과 같음을 알 수 있다.[2]
최고차항 계수가 1인 이차식으로 나누는 조립제법의 예
이러한 조립제법은 제수의 차수가 더 높은 경우에도 사용가능하다. 다음의 예제를 살펴보자.
먼저 피제수의 계수를 모두 쓴다.
제수의 계수의 부호를 바꾼다.
제수의 최고차항을 제외한 나머지 계수들을 대각선 방향으로 써 내려간다.
피제수의 첫 번째 계수는 그대로 내려온다.
내려간 계수는 좌측의 값과 곱하여 대각선 위로 올라간다.
가로선 위쪽의 같은 열의 수들을 세로로 더해서 가로선 아래쪽에 쓴다.
이전의 두 단계를 반복하여 끝까지 계산한다.
마지막 부분을 더해서 아래쪽에 쓴다.
이차식으로 나누었으므로, 가로줄 아래쪽에 나열된 수 중에서 우측 두 수는 나머지의 계수를 의미하고, 나머지 수들은 내림차순으로 몫의 계수들을 의미하게 된다. 그리하여 나눗셈의 결과는 다음과 같음을 알 수 있다.[1]
만약 최고차항의 계수가 1이 아닌 이차식의 경우 맨 앞에서 서술한 대로 적절한 수를 곱해서 제수의 최고차항의 계수를 1로 만들어줘야 한다.
같이 보기
각주
외부 링크
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 기호 계산
- 나눗셈
- 대수학