곱셈 역원
수학에서, 어떤 수의 곱셈 역원(-逆元, 영어: multiplicative inverse) 또는 역수(逆數, 영어: reciprocal)는 그 수와 곱하면 곱셈 항등원(1)이 되는 수를 말한다. 두 수의 곱이 1이 될 때, 한 수를 다른 수의 역수라고 한다. 의 곱셈 역원은 와 같이 표기하거나 와 같이 쓸 수 있다. 곱하여 1이 되는 두 수를 '서로 곱셈 역원'이라 하기도 하는데, 이는 곱셈 역원 관계가 대칭 관계이기 때문에 가능한 표현이다. 즉, 만약 가 의 곱셈 역원이라면, 역시 의 곱셈 역원이다.
예를 들어, 유리수 의 곱셈 역원은 이다. 실수 의 곱셈 역원은 이며, 복소수 의 곱셈 역원은 이다. 보다 일반적으로, 유리수 의 곱셈 역원은 항상 이며, 복소수 의 곱셈 역원은 항상 이다. 0이 아닌 복소수의 곱셈 역원은 항상 존재하며, 또한 항상 유일하다. 그러나 0은 곱셈 역원을 가질 수 없는데, 이는 0에 아무런 수를 곱하여도 0이 되기 때문이다. 각 실수를 그 곱셈 역원으로 대응시키는 함수 는 반비례 함수의 예이다. 이러한 이름은 변숫값과 함숫값이 반비례 관계를 이룬다는 데에서 왔다.
곱셈 역원의 개념은 모든 모노이드에서 다룰 수 있다. 이 경우 교환 법칙이 성립한다는 보장이 없으므로 곱셈 역원은 두 가지 순서로 곱하였을 때 모두 곱셈 항등원인 두 원소의 관계로 정의된다. 단지 왼쪽 또는 오른쪽에 곱하였을 때 곱셈 항등원이 된다고 요구할 경우 왼쪽 역원과 오른쪽 역원의 개념을 얻는다.모든 원소가 곱셈 역원을 갖는 모노이드를 군이라고 한다. 곱셈 역원의 개념은 환에서도 다뤄지며, 이 경우 곱셈 역원을 갖는 원소는 가역원이라고 불린다. 이들 가역원은 가역원군이라는 군을 이룬다. 환의 가역원이 유일한 역원을 가질 필요충분조건은 모든 0이 아닌 원소가 가역원을 갖는 경우를 나눗셈환이라고 하며, 여기에 곱셈 교환 법칙을 추가하면 가장 익숙한 체의 정의가 완성된다.
정의
모노이드 의 이항 연산이 곱셈으로 간주될 경우, 그 항등원은 곱셈 항등원으로 간주된다. 이 경우 모노이드의 각 원소 에 대하여, 만약 다음 조건을 만족시키는 원소 가 존재할 경우, 를 의 곱셈 역원이라고 한다.
곱셈 역원을 와 같이 표기할 수 있는 이유는 각 원소의 곱셈 역원이 많아야 하나인 데 있다. 이는 각 원소 의 두 곱셈 역원 이 모노이드의 결합 법칙에 따라 다음을 만족시키기 때문이다.
성질
군(모든 원소가 곱셈 역원을 갖는 군) 의 경우 곱셈 역원을 하나의 일항 연산 으로 치부할 수 있다. 역원 연산은 군의 반대 자기 동형을 이룬다. 다시 말해, 다음과 같은 항등식이 성립한다.
환의 가역원은 항상 정칙원이다. 이는 다음과 같은 이유에서다. 만약 가 가역원일 경우, 만약 이라면, 양변의 왼쪽에 역원 을 곱하면 이 되고, 정리하면 이 된다. 마찬가지 이유로 만약 이라면 이다.
반면 환의 정칙원은 가역원이 아닐 수 있다. 예를 들어, 정수환의 -1, 0, 1을 제외한 모든 원소는 정칙원이지만 가역원이 아니다. 반면 유한환의 모든 정칙원은 가역원이다. 이는 정칙원에 의한 왼쪽 곱셈이 단사 함수이며, 유한 집합 위의 단사 함수는 항상 전사 함수이기 때문이다. 특히, 유한 정역은 항상 체를 이룬다.
자명환이 아닌 환에서 0의 곱셈 역원은 존재하지 않는다. 이는 모든 가역원이 정칙원이라는 명제의 특수한 경우이다. 모든 원소가 곱셈 역원을 갖춘 경우, 특히 모든 체의 경우, 나눗셈을 정의할 수 있는데, 이 경우 나누는수는 0이 될 수 없다. 자명환의 경우 0의 곱셈 역원은 0 자기 자신이 된다.
예
- e의 곱셈 역원 는 함수 가 최솟값을 취하는 점이다. 즉, 임의의 에 대하여, 이다.
- 황금비 의 곱셈 역원 은 동일한 소수 부분을 갖는다.
- 의 곱셈 역원은 이다. 특히 의 곱셈 역원은 인데, 이 둘은 같은 소수 부분을 갖는다.
- 사인 , 코사인 , 탄젠트 의 곱셈 역원은 각각 코시컨트 , 시컨트 코탄젠트 이다.
- 유리수 의 곱셈 역원은 이다.
- 복소수 의 곱셈 역원은 이다. 여기서 는 의 켤레 복소수, 는 의 절댓값이다.
- 정사각 행렬의 곱셈 역원을 역행렬이라고 한다. 이는 가우스 소거법을 통해 구할 수 있으며, 고전적 수반 행렬 나누기 행렬식이라는 공식 역시 존재한다. 정사각 행렬은 역원을 가질 필요가 없다. 즉, 행렬환은 의 경우를 제외하면 정역일 수 없다.
같이 보기
외부 링크
- Weisstein, Eric Wolfgang. “Multiplicative inverse” (영어). 《Wolfram MathWorld》. Wolfram Research.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 추상대수학
- 초등대수학
- 곱셈
- 초등 특수 함수
- 단항 연산