정다각형 테셀레이션
이 문서는 다른 언어판 위키백과의 문서(en:Euclidean tilings by convex regular polygons)를 번역 중이며, 한국어로 좀 더 다듬어져야 합니다. |
| 파일:1-uniform n1.svg 정규 타일링은 한 종류의 정다각형이 쓰인다. |
섬네일을 만드는 중 오류 발생: 준정규 타일링 또는 균일 타일링은 꼭짓점 배치가 한 가지이지만, 두 종류 이상의 정다각형이 쓰인다. |
| 섬네일을 만드는 중 오류 발생: k-균일 타일링은 k가지 꼭짓점 배치가 있고, 두 종류 이상의 정다각형이 쓰인다. |
섬네일을 만드는 중 오류 발생: 모서리 대 모서리로 만나지 않는 타일링은 다른 크기의 정다각형이 있을 수 있다. |
정다각형 타일링은 정다각형으로 유클리드 평면을 채우는 타일링으로, 고대부터 널리 쓰여 왔다. 1619년 케플러의 책 《세계의 조화》에서 이 테셀레이션에 대해 최초로 체계적이며 수학적으로 접근했다.
유클리드 타일링의 표기법
유클리드 타일링은 대부분 Cundy & Rollett의 표기법을 사용한다.[1] 이 표기법은 (1) 꼭짓점의 개수, (2) 각 꼭짓점이 접하는 다각형의 개수(시계 방향), (3) 그 다각형 각각의 변의 개수를 나타낸다. 예를 들어서 36; 36; 34.6에서 2가지 다른 꼭짓점 배치를 가지는 3개의 꼭짓점이 있다는 것을 알 수 있다. 따라서 이 타일링을 '3-균일(2-꼭짓점 종류)' 타일링이라고 한다. 쪼개서 보면, 36; 36 (추이가 다름) 또는 (36)2에서 정삼각형 6개가 모인 꼭짓점이 2개라는 것을 알 수 있다. 마지막 꼭짓점 34.6에서는 4개의 인접한 변 길이가 같은 정삼각형과 하나의 정육각형이 모여 있다는 걸 알 수 있다.
하지만 이 표기법은 형태와 특이성이 애매해서 두 가지 문제점이 있다.[2] 첫 번째, k-균일 타일링에서 이 표기법은 꼭짓점들 사이의 관계를 설명하지 않는다. 따라서 표기법만 가지고 평면을 채우는 건 불가능하다. 두 번째, 일부 테셀레이션은 표기법이 같다. 육각형의 상대적인 위치가 다르다는 것으로만 다른 테셀레이션이라는 것을 알 수 있는 경우도 있다. 이는 이 표기법만으로 각 테셀레이션을 구별할 수 없다 (각 테셀레이션에 고유한 표기가 할당되어 있지 않다)는 것을 의미한다.
이런 문제를 해결하기 위한 GomJau-Hogg의 표기법[3]은 테셀레이션과 이중 격자(double-layer grids)의 세대(generation)와 표기법에 대해, 위의 연구와 표기법을 살짝 변형해 2012년 발표되었다.[2] 무료 온라인 앱 Antwerp v3.0은 GomJau-Hogg의 표기법으로 직접 알 수 있는 도형 배치 단계, 반복되는 회전과 반사 변환을 통해서 무수히 많은 세대의 정다각형 타일링을 표현할 수 있다.[4]
정규 타일링
Grünbaum과 Shephard(section 1.3)에 따르면, 정규 타일링은 타일링의 대칭군이 기점(영어판)에 추이적으로 작용하는 것을 말한다. 여기서 기(旗, flag)는 한 꼭짓점, 그 꼭짓점에 인접한 한 모서리, 그 꼭짓점과 모서리에 동시에 인접한 한 면 3가지를 말한다. 다시 말해서 어떤 쌍의 기점에도, 첫 번째에서 두 번째 기점으로의 대칭 작용이 있다는 것이다.
정규 타일링은 합동인 정다각형을 통해 모서리 대 모서리로 만들어지는 타일링과 동치이다. 세 가지 정규 타일링은 정삼각형 6개, 정사각형 4개, 정육각형 3개가 한 꼭짓점에 모일 때 가능하다.
정규 타일링이 3개뿐이라는 것은 비교적 쉽게 증명할 수 있다. 정n각형의 한 내각의 크기는 인데, 정규 타일링은 모서리 대 모서리 타일링이고 한 종류의 정다각형만 사용하므로 한 내각의 크기가 360°의 약수여야 한다. n이 최소인 3일 때 60°이고 n 값에 상관없이 180°보다 작으므로 가능한 경우는 360°/6=60°, 360°/5=72°, 360°/4=90°, 360°/3=120°가 있다. 이 중 실제로 가능한 것은 60°의 정삼각형, 90°의 정사각형, 120°의 정육각형뿐이다.[5]
| p6m, *632 | p4m, *442 | |
|---|---|---|
| 섬네일을 만드는 중 오류 발생: | 파일:1-uniform n1.svg | 섬네일을 만드는 중 오류 발생: |
| 섬네일을 만드는 중 오류 발생: C&R: 36 GJ-H: 3/m30/r(h2) (t = 1, e = 1) |
섬네일을 만드는 중 오류 발생: C&R: 63 GJ-H: 6/m30/r(h1) (t = 1, e = 1) |
섬네일을 만드는 중 오류 발생: C&R: 44 GJ-H: 4/m45/r(h1) (t = 1, e = 1) |
C&R: Cundy & Rollet의 표기법
GJ-H: GomJau-Hogg의 표기법
준정규 타일링
점추이는 임의의 한 쌍의 꼭짓점에 첫 번째에서 두 번째 꼭짓점으로 가는 대칭 작용이 있다는 것이다.[6]
기(flag)추이의 조건이 점추이 중 하나로 약해지면, 모서리 대 모서리라는 조건이 있을 때 8개의 타일링이 더 가능하다. 이를 아르키메데스, 균일(고른), 준정규 타일링이라고 한다. 34.6 (다듬은 정육각형) 타일링은 카이랄성을 지녀서 두 거울상이 있다. 다른 나머지 정규 또는 준정규 타일링은 카이랄성이 없다.
| p6m, *632 | |||||
|---|---|---|---|---|---|
| 파일:1-uniform n4.svg 파일:Vertex type 3-12-12.svg C&R: 3.122 GJ-H: 12-3/m30/r(h3) (t = 2, e = 2) t{6,3} |
파일:1-uniform n6.svg 섬네일을 만드는 중 오류 발생: C&R: 3.4.6.4 GJ-H: 6-4-3/m30/r(c2) (t = 3, e = 2) rr{3,6} |
C&R: 4.6.12 GJ-H: 12-6,4/m30/r(c2) (t = 3, e = 3) tr{3,6} |
섬네일을 만드는 중 오류 발생: C&R: (3.6)2 GJ-H: 6-3-6/m30/r(v4) (t = 2, e = 1) r{6,3} | ||
| 섬네일을 만드는 중 오류 발생: C&R: 4.82 GJ-H: 8-4/m90/r(h4) (t = 2, e = 2) t{4,4} |
파일:1-uniform n9.svg 파일:Vertex type 3-3-4-3-4.svg C&R: 32.4.3.4 GJ-H: 4-3-3,4/r90/r(h2) (t = 2, e = 2) s{4,4} |
섬네일을 만드는 중 오류 발생: 섬네일을 만드는 중 오류 발생: C&R: 33.42 GJ-H: 4-3/m90/r(h2) (t = 2, e = 3) {3,6}:e |
섬네일을 만드는 중 오류 발생: 섬네일을 만드는 중 오류 발생: C&R: 34.6 GJ-H: 6-3-3/r60/r(h5) (t = 3, e = 3) sr{3,6} | ||
C&R: Cundy & Rollet의 표기법
GJ-H: GomJau-Hogg의 표기법
Grünbaum과 Shephard는 이런 타일링이 각 꼭짓점의 타일 배치가 같다는 부분적(local) 특성만 지키기 때문에 아르키메데스라고 불렀다. 또 점특이의 전체적(global) 특성을 만족하기 때문에 균일하다(고르다)고 했다. 평면에서는 같은 집합의 타일링을 말하지만, 다른 공간에서는 아르키메데스 타일링 중 고르지 않은 것도 있다.
같이 보기
각주
- ↑ Cundy, H.M.; Rollett, A.P. (1981). 《Mathematical Models;》. Stradbroke (UK): Tarquin Publications.
- ↑ 가 나 Gomez-Jauregui, Valentin al.; Otero, Cesar 외 (2012). “Generation and Nomenclature of Tessellations and Double-Layer Grids”. 《Journal of Structural Engineering》 138 (7). doi:10.1061/(ASCE)ST.1943-541X.0000532.
- ↑ Gomez-Jauregui, Valentin; Hogg, Harrison 외 (2021). “GomJau-Hogg’s Notation for Automatic Generation of k-Uniform Tessellations with ANTWERP v3.0”. 《Symmetry》 13 (12). doi:10.3390/sym13122376.
- ↑ Hogg, Harrison; Gomez-Jauregui, Valentin. < “Antwerp 3.0”.
- ↑ “다각형의 변신 (2부) 꽃담에 숨은 다각형의 원리”. 《EBS MATH > 중1 > 기하》.
- ↑ Critchlow, K. (1969). 《Order in Space: A Design Source Book,》. London: Thames and Hudson. 60–61쪽.
- 잘못된 파일 링크가 포함된 문서
- 번역 중인 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 정다각형 타일링
- 테셀레이션
- 유클리드 평면기하학