리만 곡률 텐서
리만 기하학에서 리만 곡률 텐서(Riemann曲率tensor, 영어: Riemann curvature tensor)는 리만 다양체의 곡률을 나타내는 (1,3)차 텐서장이다.
정의
리만 다양체 가 주어졌다고 하자. 그렇다면, 레비치비타 접속 을 정의할 수 있다. 그렇다면, 임의의 두 벡터장 에 대하여, 다음과 같은 표현을 정의할 수 있다.
이 2차 미분 연산자 은 사실 (1,3)차 텐서장에 불과한 것을 보일 수 있으며, 이 텐서장을 리만 곡률 텐서라고 한다. 즉, 리만 곡률 텐서는 공변 미분의 비가환성을 나타내는 개체로 이해할 수 있다.
지표 표현
좌표로 쓰면 다음과 같다. 여기서는 지표(index)와 아인슈타인 표기법을 쓰자. 레비치비타 접속은 크리스토펠 기호 로 나타내어진다. 그렇다면 리만 곡률 텐서는 다음과 같다.
성질
대칭
리만 곡률 텐서는 다음과 같은 대칭을 지닌다.
- 반대칭성
- 지표 교환 대칭성
- 제1 비안키 항등식(영어: first Bianchi identity)
- 제2 비안키 항등식(영어: second Bianchi identity)
- .
이에 따라, 차원 다양체에서 리만 곡률 텐서는 개의 독립된 성분을 지닌다. (교환 대칭성은 반대칭성과 제1 비앙키 항등식으로부터 유도할 수 있다.)
지표로 쓰면 이들은 다음과 같다.
- 반대칭성
- 지표 교환 대칭성
- 제1 비안키 항등식
- .
- 제2 비안키 항등식
- .
여기서 대괄호 는 지표의 (완전) 반대칭화, 소괄호 는 지표의 대칭호를 뜻한다.
이 대칭에 따라서, 차원에서 리만 곡률 텐서의 서로 독립인 성분은
개이다. 임의의 차원에서, 리만 곡률 텐서는 리치 곡률 텐서와 바일 곡률 텐서로 표현될 수 있다. 리치 곡률 텐서의 성분의 수는 이며 바일 곡률 텐서의 성분의 수는
이다.
공변 미분의 교환자
리만 다양체 위의 임의의 벡터장 에 대하여, 리만 곡률의 정의에 따라 다음이 성립한다.
리만 다양체 위의 임의의 1차 미분 형식 에 대하여, 다음이 성립한다.
보다 일반적으로, 임의의 차 텐서장 에 대하여, 다음이 성립한다.[1]
낮은 차원의 리만 곡률
1차원 리만 다양체(즉, 곡선)의 리만 곡률 텐서는 항상 0이다. 1차원 이하의 다양체는 내재적 곡률을 갖지 않는다.
2차원 리만 다양체의 경우, 리만 곡률 텐서는 1개의 독립된 성분을 가지며, 구체적으로 다음과 같은 꼴이다.
3차원 리만 다양체의 경우, 리만 곡률 텐서는 6개의 독립된 성분을 가지며, 이는 리치 곡률 텐서의 성분의 수와 같다. 이 경우 리만 곡률 텐서는 리치 곡률 텐서 로 표현될 수 있으며, 다음과 같다.
여기서 텐서장 는 리치 곡률 텐서와 아인슈타인 텐서의 평균이며, 스하우턴 텐서(영어: Schouten tensor)라고 한다.
역사
베른하르트 리만의 이름을 땄으며, 리만의 1861년 논문[2]에 원시적인 형태로 등장한다.[3]:228, 239 리만은 리만 곡률 텐서를 로 표기하였다.[3]:228
이후 엘빈 브루노 크리스토펠이 1869년에 같은 개념을 독자적으로 발견하였다.[3]:228, 239 이 때문에 리만-크리스토펠 텐서라고 불리기도 한다.
응용
일반 상대성 이론은 리만 기하학을 기반으로 한다. 그러나 이 경우 리만 곡률 텐서 자체는 아인슈타인 방정식에 등장하지 않으며, 오직 리치 곡률 텐서(또는 아인슈타인 텐서)만이 등장한다. 다시 말해, 리만 곡률 텐서의 나머지 성분(즉, 바일 곡률 텐서)은 장방정식에 대하여 결정되지 않으며, 이는 중력파에 해당한다.
같이 보기
각주
- ↑ Sandberg, Vernon D. (1978). “Tensor spherical harmonics on S2 and S3 as eigenvalue problems” (PDF) (영어). 《Journal of Mathematical Physics》 19 (12): 2441–2446. Bibcode:1978JMP....19.2441S. doi:10.1063/1.523649.
- ↑ Riemann, Bernhard (1861). “Commentatio mathematica, qua respondere tentatur quaestioni ab Ⅲma Academia Parisiensi propositae: “Trouver quel doit être l’état calorifique d’un d’un corps solide homogene indéfini pour qu’un système de courbes isothermes, à un instant donné, restent isothermes après un temps quelconque, de telle sorte que la température d’un point puisse s’exprimer en fonction du temps et de deux autres variables independantes”” (라틴어).
- ↑ 가 나 다 Farwell, Ruth; Knee, Christopher (1990). “The missing link: Riemann’s “Commentatio,” differential geometry and tensor analysis” (PDF) (영어). 《Historia Mathematica》 17: 223–255.
외부 링크
- “Riemann tensor” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Riemann tensor” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Riemann curvature” (영어). 《nLab》.
- 이철희. “리만 곡률 텐서”. 《수학노트》.
- CS1 - 영어 인용 (en)
- CS1 - 라틴어 인용 (la)
- 영어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 리만 기하학
- 일반 상대성이론
- 베른하르트 리만