모듈러 산술
수론에서 모듈러 산술(영어: modular arithmetic) 또는 합동 산술(合同算術)은 정수의 합과 곱을 어떤 주어진 수의 나머지에 대하여 정의하는 방법이다. 정수환의 몫환 의 환 구조로 생각할 수 있다.
정의
이 2 이상의 정수라고 하자. 정수환 의 주 아이디얼 에 대한 몫환 의 원소들은 과 일대일 대응하며, 이는 정수를 으로 나눈 나머지로 생각할 수 있다. 즉, 환 준동형
을, 정수를 에 대한 나머지로 대응시키는 함수로 여길 수 있다.
임의의 두 정수 에 대하여 다음 두 조건이 서로 동치이며, 이 조건이 성립하면 와 가 법 에 대하여 합동(法에 對하여 合同, 영어: congruent modulo )이라고 한다.
- 인 정수 가 존재한다.
- 이다. 즉, 와 는 의 같은 동치류에 속한다.
이는 기호로는
이라고 한다. 정수의 합동은 동치 관계를 이룬다.
성질
덧셈 · 뺄셈 · 곱셈
은 가환환이므로, 임의의 가환환에서와 마찬가지로 덧셈 · 뺄셈 · 곱셈을 정의할 수 있으며, 덧셈과 곱셈은 결합 법칙 · 교환 법칙을 따르고, 또한 분배 법칙이 성립한다. 이 환 준동형이므로, 임의의 에 대하여 다음 두 조건이 서로 동치이다.
마찬가지로, 다음 두 조건이 서로 동치이다.
마찬가지로, 다음 두 조건이 서로 동치이다.
중국인의 나머지 정리
의 소인수 분해가
라고 하자. 그렇다면 중국인의 나머지 정리에 따르면 다음과 같은 가환환의 동형이 존재한다.
즉, 두 개 이상의 소인수를 갖는 수에 대한 모듈러 산술은 그 소인수들(의 거듭제곱)에 대한 합동류들을 성분별로 취급하는 것과 같다.
나눗셈
일반적으로, 은 체가 아니므로, 모듈러 산술에서 나눗셈은 일반적으로 정의되지 않는다. 다만, 만약 이 소수라면 은 체를 이루며, 이 경우 0이 아닌 모든 수의 역수가 존재한다.
합성수 에 대한 모듈러 산술의 경우, 오직 과 서로소인 수만이 가역원이다 (역수를 정의할 수 있다). 이는 오일러의 정리에 따라
이기 때문이다 (는 오일러 피 함수). 즉, 개의 합동류 가운데 오직 개만이 가역원이며, 가역원 의 역원은 이다.
홀수 소수의 거듭제곱
2가 아닌 소수 에 대하여, 의 가역원들은 총
개가 있으며 (는 오일러 피 함수), 그 가역원군은 순환군이다.
2의 거듭제곱
에 대하여, 의 가역원군은 다음과 같다.
일반적 합성수
일반적 합성수의 경우, 가역원군은 중국인의 나머지 정리에 따라서
이다.
아이디얼
에서도 정수환의 경우와 마찬가지로 아이디얼과 소 아이디얼 및 극대 아이디얼의 개념을 정의할 수 있다. 의 아이디얼은 모두 의 약수에 의하여 생성되는 주 아이디얼이다. 즉, ()의 꼴이다.
이 아이디얼들 가운데, 소 아이디얼인 것은 가 소수인 경우이다. 즉, 의 소 아이디얼은 의 소인수들의 주 아이디얼들이다. 에서 극대 아이디얼의 개념과 소 아이디얼의 개념은 서로 일치한다. 즉, 모든 극대 아이디얼은 소 아이디얼이며, 모든 소 아이디얼은 극대 아이디얼이다.
따라서, 의 크룰 차원은 다음과 같다.
이는 대수기하학적으로 다음과 같이 해석할 수 있다. 의 소인수 분해가
라면, 중국인의 나머지 정리에 따라서 이다. 이는 가환환의 범주에서의 곱이므로, 아핀 스킴의 범주에서의 쌍대곱이 된다. 즉,
가 된다. 각 는 하나의 소 아이디얼 을 갖는 국소환이며, 따라서 위상 공간으로서는 한원소 집합이다. 즉, 아핀 스킴 은 위상 공간으로서 의 각 소인수에 대응하는 개의 점들로 구성된 공간이다.
(만약 일 경우, 이는 정수환의 스펙트럼이므로, 1차원이다. 일 경우, 자명환의 스펙트럼은 공집합이다.)
예
14와 20 그리고 −4는 법 6에 대하여 합동이다. 이를 식으로 나타내면
이다.
같이 보기
외부 링크
- “Congruence” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Congruence equation” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Two-term congruence” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Congruence modulo a prime number” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Congruence” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Congruence equation” (영어). 《Wolfram MathWorld》. Wolfram Research.
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 모듈러 산술
- 수론
- 가환대수학
- 유한환