위상 공간 (수학)
일반위상수학에서 위상 공간(位相空間, 영어: topological space)은 어떤 점의 "근처"가 무엇인지에 대한 정보를 담고 있지만, 점 사이의 거리나 넓이·부피 따위의 정보를 포함하지 않는 공간이다. 이를 사용하여, 함수의 연속성이나 수열의 극한, 집합의 연결성 등을 정의할 수 있다.
위상 공간의 개념은 위상수학 및 이를 기초로 하는 기하학 · 해석학에서 핵심적으로 사용된다. 위상 공간의 일반적인 성질을 연구하는 분야를 일반위상수학이라고 한다.
정의
집합 위의 위상(位相, 영어: topology)은 다음과 같이 다양하게 정의할 수 있다.
- (열린집합을 사용한 정의) 다음 조건을 만족시키는 부분 집합들의 모임 . 이 경우, 의 원소들을 열린집합이라고 한다.
- 만약 라면,
- 만약 라면,
- (닫힌집합을 사용한 정의) 다음 조건을 만족시키는 부분 집합들의 모임 . 이 경우, 의 원소들을 닫힌집합이라고 한다.
- 만약 라면,
- 만약 라면,
- (근방을 사용한 정의) 다음 조건을 만족시키는 함수 . 이 경우 로 쓰고, 의 원소를 의 근방이라고 한다.
- 모든 에 대하여,
- 모든 에 대하여, 만약 라면
- 만약 이며 라면,
- 만약 라면
- 만약 라면, 인 가 존재한다.
- (폐포를 사용한 정의) 다음 조건을 만족시키는 함수 . 이 경우, 를 의 폐포라고 한다.
- 모든 에 대하여,
- 모든 에 대하여,
- 모든 에 대하여,
- (내부를 사용한 정의) 다음 조건을 만족시키는 함수 . 이 경우, 를 의 내부라고 한다.
- 모든 에 대하여,
- 모든 에 대하여,
- 모든 에 대하여,
이 정의들은 서로 동치이다.
- 열린집합을 사용한 정의에서,
- 닫힌집합을 사용한 정의에서, 열린집합은 닫힌집합의 여집합이다.
- 근방을 사용한 정의에서, 열린집합은 인 집합 이다.
- 폐포를 사용한 정의에서, 열린집합은 인 집합 이다.
- 내부를 사용한 정의에서, 열린집합은 인 집합 이다.
즉, 근방 · 열린집합 · 닫힌집합 · 폐포 · 내부 가운데 하나를 기본 무정의 개념으로 삼고, 이로부터 나머지 개념들을 정의할 수 있다.
위상 공간 은 위상을 갖춘 집합이다.
위상의 비교
같은 집합 위의 두 위상 , 에 대하여, 다음 세 조건이 서로 동치이며, 만약 이 조건이 성립한다면 이 보다 더 섬세하다(-纖細-, 영어: finer)고 하며, 반대로 가 보다 더 거칠다(영어: coarser)고 한다.
- . 즉, 모든 -열린 집합은 -열린 집합이다.
- 모든 -닫힌집합은 -닫힌집합이다.
- 의 기저 및 의 기저 가 주어졌을 때, 모든 및 에 대하여, 인 이 존재한다.
성질
격자론적 성질
주어진 위상 공간 의 열린집합들은 완비 헤이팅 대수를 이룬다. 즉, 위상 공간은 직관 논리의 모형으로 여길 수 있다. 또한, 위상 공간은 양상 논리 S4의 모형으로 여길 수 있다. 이 경우 양상 기호 (필연 기호)는 집합의 내부에, 양상 기호 (개연 기호)는 집합의 폐포에 대응한다.
주어진 집합 위의 위상들은 섬세성 관계에 따라서 완비 유계 격자를 이룬다. 이 격자의 최대 원소(즉, 가장 섬세한 위상)는 이산 위상이며, 최소 원소(즉, 가장 거친 위상)는 비이산 위상이다.
주어진 집합 위의 위상들의 족 의 하한(만남)은
이다. 주어진 집합 위의 위상들의 족 의 상한(이음)은 를 기저로 하는 위상이다.
범주론적 성질
위상 공간과 연속 함수들은 범주를 이루며, 이 범주를 이라고 한다. 이 경우, 망각 함자
를 통해, 은 구체적 범주를 이룬다. 이 망각 함자는 좌 · 우 수반 함자를 갖는다.
여기서
은 집합을 이산 공간으로 대응시키고,
는 집합을 비이산 공간으로 대응시킨다.
은 완비 범주이며 쌍대 완비 범주이다. 즉, 모든 작은 (= 고유 모임 크기가 아닌) 극한과 쌍대극한이 존재한다. 특별한 극한 및 쌍대극한은 다음과 같다.
| 범주론의 개념 | 위상수학의 개념 |
|---|---|
| 시작 대상 | (유일한 위상을 갖춘) 공집합 |
| 끝 대상 | 한원소 공간 |
| 곱 | 곱공간 |
| 쌍대곱 | 분리 합공간 |
| 동등자 | 의 동등자는 부분 공간 |
| 쌍대동등자 | 의 쌍대동등자는 몫공간 |
| 밂 | 의 밂은 붙임 공간 |
| 당김 | 의 당김은 당김 공간 |
| 단사 사상 | 연속 단사 함수 |
| 정칙 단사 사상 | 위상 공간의 매장 |
| 유효 전사 사상 | |
| 전사 사상 | 연속 전사 함수 |
| 정칙 전사 사상 | 몫사상 |
| 유효 전사 사상 |
은 데카르트 닫힌 범주가 아니다. 구체적으로, 함자 는 정칙 전사 사상을 보존하지 않으므로, 왼쪽 수반 함자를 가질 수 없다.[1]:15
예
유한 집합 위의 위상의 경우, 열린집합들을 그대로 나열할 수 있다. 예들 들어, 집합 X = {1,2,3} 위에서, 다음은 위상을 이룬다.
- (비이산 위상)
그러나 다음은 위상을 이루지 않는다.
좀 더 복잡한 위상 공간의 경우, 다양한 구조로서 위상들을 정의할 수 있다.
- 전순서가 주어졌을 때, 이를 사용하여 순서 위상을 정의할 수 있다. 실수의 집합의 표준적인 위상은 그 표준적 전순서에 대한 순서 위상이다.
- 거리 함수가 주어졌을 때, 이를 사용하여 거리 위상을 정의할 수 있다. 실수의 집합이나 복소수의 집합 위에, 두 수의 차의 절댓값은 거리 함수이며, 이에 대한 거리 위상은 실수 · 복소수 집합의 표준 위상이다.
- 어떤 집합을 곱집합 로 나타내었을 때, 각 에 위상을 정의하면 곱집합 전체에 곱위상이라는 위상을 줄 수 있다.
- 동치관계가 주어져있을 때, 이에 대한 몫집합에 몫위상을 정의할 수 있다. 이는 기하적으로 서로 다른 점을 같게하여 붙인다라는 개념을 줄 수 있다.
- 어떤 집합 위에, 열린집합으로 삼고 싶은 집합족 가 존재한다면, 이들을 포함하는 가장 거친 위상을 줄 수 있다. 이러한 집합족을 부분 기저라고 한다.
- 어떤 집합 를 다른 집합의 부분 집합 으로 나타내었을 때, 에 위상이 존재한다면 이로부터 위에 부분공간 위상을 정의할 수 있다.
- 아무런 구조 없는 집합 위에도 여러 위상을 줄 수 있다.
관련 개념
특별한 위상 공간
위상 공간의 개념은 매우 일반적이며, 대부분의 경우 특정한 성질을 만족시키는 위상 공간들을 고려한다. 대표적인 것들은 다음과 같다.
| 분리성 | 가산성 | 연결성 | 콤팩트성 | 기타 성질 |
|---|---|---|---|---|
추가 구조
위상 공간은 근방의 개념 밖에는 다른 정보를 추가적으로 담고 있지 않다. 이에 대하여 여러 다른 정보를 추가하여, 다음과 같은 구조들을 정의할 수 있다.
- 두 점 사이의 거리의 개념을 추가하면, 거리 공간을 얻는다.
- 집합의 넓이 · 부피의 개념을 추가하면, 보렐 측도 공간 또는 라돈 측도 공간을 얻는다.
- 매끄러운 함수의 개념을 추가하면, 매끄러운 다양체를 얻는다.
- 군의 구조를 추가하면, 위상군을 얻는다. 더하여서 매끄러움 구조를 추가하면 리 군이 된다.
- 환의 구조를 추가하면, 위상환을 얻는다.
- 벡터 공간의 구조를 추가하면, 위상 벡터 공간을 얻는다.
일반화
위상 공간의 개념은 매우 일반적인 개념이지만, 대수기하학에서는 이보다 더 일반적인 개념을 필요로 할 때가 있다. 이 경우, 열린집합들의 포함 관계에 대한 부분 순서 집합을 범주로 추상화하여, 덮개의 개념을 공리화할 수 있는데, 이렇게 하면 범주 위의 그로텐디크 위상의 개념을 얻는다. 또한, 이를 한 단계 더 추상화하여, 공간의 열린집합들 대신 공간 위의 모든 층들의 범주의 성질을 공리화하면 토포스의 개념을 얻는다.
범주론 대신, 위상 공간의 열린집합들의 격자론적 성질(완비 헤이팅 대수)을 공리화하면 장소(영어: locale)라는 개념을 얻는다.
역사
1910년대 이전까지는 위상 공간의 개념이 따로 존재하지 않았고, 열린집합은 거리 공간에 대해서만 정의되었다. 1908년에 리스 프리제시는 거리 함수를 사용하지 않고, 수열의 극한을 사용하여 위상 공간의 개념을 공리화하였고,[2] 1914년에 펠릭스 하우스도르프는 근방의 개념을 사용하여 이를 재정의하였다.[3] 하우스도르프의 정의에는 오늘날 하우스도르프 공간의 정의에 들어가는 조건이 추가되었는데, 이는 이후 정의에서 제거되었다.
참고 문헌
- ↑ Kelly, Gregory Maxwell (2005). “Basic concepts of enriched category theory” 1982년판 재판 (영어). 《Reprints in Theory and Applications of Categories》 (No. 10 (2005)): 1~136. MR 2177301. Zbl 1086.18001.
- ↑ Riesz, F. (1909). 〈Stetigkeitsbegriff und abstrakt Mengenlehre〉 (독일어). 《Atti del IV Congresso Internazionale dei Matematici (Roma, 6–11 Aprile 1908)》. Accademia Nazionale dei Lincei.
- ↑ Hausdorff, F. (1914). 《Grundzüge der Mengenlehre》 (독일어). 라이프치히: von Veit. JFM 45.0123.01. Zbl 1175.01034.
- 박대희; 안승호 (2013). 《위상수학》 3판. 경문사. ISBN 978-89-6105-668-7. 2014년 11월 29일에 원본 문서에서 보존된 문서. 2015년 1월 25일에 확인함.
- Munkres, James R. (2000). 《Topology》 2판 (영어). Prentice Hall. ISBN 978-0-13-181629-9. MR 0464128. Zbl 0951.54001.
- Steen, Lynn Arthur; J. Arthur Seebach, Jr. (1978). 《Counterexamples in topology》 2판 (영어). Springer. doi:10.1007/978-1-4612-6290-9. ISBN 978-0-387-90312-5. MR 507446. Zbl 0386.54001.
같이 보기
외부 링크
- 파일:Commons-logo.svg 위키미디어 공용에 [{{fullurl:Commons:모듈:WikidataIB 508번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).|uselang=ko}} 위상 공간] 관련 미디어 분류가 있습니다.
- “Topological space” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Topological structure (topology)” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Topological space” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Topology” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Topological space” (영어). 《nLab》.
- “Top” (영어). 《nLab》.
- “Topological space” (영어). 《Topospaces》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- CS1 - 영어 인용 (en)
- CS1 - 독일어 인용 (de)
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- 인용 오류 - 오래된 변수를 사용함
- CS1 관리 - 추가 문구
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 위상 공간