아이디얼
환론에서 아이디얼(영어: ideal) 또는 이데알(독일어: Ideal)은 특정한 조건을 만족시키는 환의 부분집합이다. 이에 대하여 몫환을 취할 수 있으며, 군론에서 정규 부분군에 대하여 몫군을 취하는 것과 유사한 개념이다.
아이디얼을 사용하여 수론적 개념을 보다 일반적인 환들에 대하여 확장시킬 수 있다. 예를 들어, 소수의 개념을 확장한 소 아이디얼 및 서로소인 수의 개념을 확장한 서로소 아이디얼을 정의하면, 일반화된 중국인의 나머지 정리를 증명할 수 있다. 수론에서 중요한 개념인 데데킨트 정역의 경우, 아이디얼에 대해 산술의 기본정리까지도 성립함을 보일 수 있다. (즉, 임의의 0이 아닌 아이디얼은 소 아이디얼들의 곱으로 유일하게 표현할 수 있다.)
정의
가 유사환이고, 가 의 (덧셈 아벨 군으로서의) 부분군이라고 하자.
- 만약 일 경우, 가 R의 왼쪽 아이디얼(左ideal, 영어: left ideal)이라고 한다.
- 만약 일 경우, 가 R의 오른쪽 아이디얼(右ideal, 영어: right ideal)이라고 한다.
- 만약 가 의 왼쪽 아이디얼 및 오른쪽 아이디얼일 경우, 가 의 양쪽 아이디얼(兩쪽ideal, 영어: two-sided ideal) 또는 단순히 아이디얼이라고 한다.
즉, 왼쪽·오른쪽·양쪽 아이디얼의 원소는 각각 왼쪽·오른쪽·양쪽에 곱셈을 해도 여전히 그 왼쪽·오른쪽·양쪽 아이디얼을 벗어나지 않는다.
의 왼쪽 아이디얼은 반대환(opposite ring) 의 오른쪽 아이디얼과 일치하며, 이는 반대로도 성립한다.
정의에 따라, 아이디얼은 유사환 의 부분 유사환을 이룬다. 만약 가 환(곱셈 항등원을 갖춘 유사환)이라도, 일반적으로 의 아이디얼은 곱셈 항등원을 갖추지 않으므로 유사환만을 이룬다. 환 의 곱셈 항등원을 포함하는, 즉 부분환을 이루는 아이디얼은 전체밖에 없다.
연산
유사환 의 두 (왼쪽·오른쪽·양쪽) 아이디얼 , 가 주어졌다고 하자. 그렇다면, 이들로부터 다음과 같은 아이디얼의 합과 곱과 교집합을 정의할 수 있으며, 이는 또다른 (왼쪽·오른쪽·양쪽) 아이디얼을 이룬다.
다만, 아이디얼의 합집합은 일반적으로 아이디얼을 이루지 않는다.
일반적으로, (왼쪽·오른쪽·양쪽) 아이디얼 , 에 대하여 다음이 성립한다.
또한, 만약 와 가 양쪽 아이디얼이라면 다음이 성립한다.
(왼쪽·오른쪽·양쪽) 아이디얼의 덧셈과 곱셈은 각각 결합 법칙·교환 법칙·분배 법칙을 따르므로, (왼쪽·오른쪽·양쪽) 아이디얼들의 집합은 반환(semiring)을 이룬다.
종류
특정한 성질을 가진 아이디얼의 종류로는 다음을 들 수 있다.
- 진 아이디얼(眞ideal, 영어: proper ideal)은 환 전체가 아닌 아이디얼이다.
- 영 아이디얼(零ideal, 영어: zero ideal)은 덧셈 항등원만을 포함하는 부분집합 이 이루는 아이디얼이다.
- 주 아이디얼(主ideal, 영어: principal ideal)은 하나의 원소에 의해 생성되는 아이디얼이다. 구체적으로, 환 속의 원소 가 주어졌을 때, 로 생성되는 왼쪽 주 아이디얼은 , 오른쪽 주 아이디얼은 , (양쪽) 주 아이디얼은 이다.
- 멱영 아이디얼
- 극대 아이디얼
- 소 아이디얼
- 으뜸 아이디얼
- 소근기
성질
- 아이디얼이 환 전체가 아닐 필요충분조건은 1을 포함하지 않는다는 것이다.
- 진 아이디얼들은 부분 집합 포함 관계에 따라 부분 순서가 주어지며, 여기에 초른 보조정리를 적용하면 모든 진 아이디얼이 극대 아이디얼에 포함되어 있음을 보일 수 있다.
- 모든 아이디얼은 0을 포함하며, 따라서 공집합이 아니다.
- 정수환 의 아이디얼은 어떤 정수 에 의해 생성되는 주 아이디얼 뿐이다. 즉, 정수환은 주 아이디얼 정역이다. 이 성질의 따름정리는 다름 아닌 나눗셈 정리이다.
- 환 R는 스스로 위의 왼쪽 가군으로 볼 수 있으며, 이때 R의 왼쪽 아이디얼들은 R의 부분 가군이다. 마찬가지로 R의 오른쪽 아이디얼들은 R를 오른쪽 가군으로 본 것의 부분가군이며, 양쪽 아이디얼들은 R를 쌍가군으로 본 것의 부분 가군이다. R가 가환환이라면 이 세 가지 경우가 일치한다.
같이 보기
외부 링크
- “Ideal” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Ideal” (영어). 《Wolfram MathWorld》. Wolfram Research.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- 독일어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 아이디얼
- 대수적 수론