구골플렉스
구골플렉스는 10의 구골 제곱()을 나타내는 수의 단위이다. 즉, 1 뒤에 0이 10100개(구골 개) 이어진 수에 해당한다.
기원
1940년, 미국의 수학자 에드워드 캐스너의 9살 짜리 조카 밀튼 시로타가 "구골"이라는 단어를 만들어냈다. 밀튼은 이 단어에 착안하여 새로운 구골플렉스라는 단어를 "1 뒤에, 쓰다가 네가 지칠 때까지 0이 이어지는 수" 라고 정의하였다. 이후 캐스너는 보다 수학적인 정의 방법을 적용하기로 마음먹었는데, 이는 "사람들이 저마다 0을 쓰다가 지치기까지 걸리는 시간이 다른 데다, 단지 지독한 끈기로 0을 더 많이 쓸 수 있다는 이유만으로 카네라 (이탈리아의 권투 선수) 가 아인슈타인 박사보다 더 위대한 수학자일 수는 없기 때문"이었다[1].
수의 규모
미국 공영방송 PBS의 과학 프로그램 Cosmos: A Personal Voyage 의 제9화 "별들의 인생 (The Lives of the Stars)" 에서, 천문학자이자 방송인인 칼 세이건은 구골플렉스를 숫자로 적기 위해서는 ("10,000,000,000..." 과 같이) 온 우주보다도 더 큰 공간을 필요로 하기 때문에 물리적으로 가능하지 않을 것이라고 예측하였다.
만일 부피가 1L인 종이 책에 '0'을 1행당 50개, 1페이지에 25줄로 총 400페이지에 걸쳐 적는다면, 대략 5×105 개의 '0'을 적을 수 있으며, 즉 1cm3 당 10개의 '0'이 적힌 것과 같다. 한편, 우리가 관측 가능한 우주의 넓이는 직경 930억광년의 구체로서 대략 3×1080m3로 여겨진다. 즉, 온 우주가 '0'이 적힌 종이로 가득 채워져 있다고 해도, 불과 3×1087개의 '0'만을 적을 수 있다는 게 되는데, 이는 구골 개에 한참 못 미치는 개수이다. 설사 온 우주의 모든 기본입자 (소립자)를 '0'을 적는 데 쓴다고 해도, 관측 가능한 우주 전체에 존재하는 기본입자의 수조차 2.5×1089개에 불과하다. 기본입자를 모두 원하더라도 우주의 넓이가 지금의 4백억배 더 넓어져야만 구골플렉스를 표기할 수 있는 것이다. 따라서, 구골플렉스를 '0'을 적는 방법으로 적는 것은 온 우주를 총 동원하여도 불가능하다 할 수 있다.
이 수를 적는 데 필요한 시간 또한 어마어마할 것이다. 어떤 사람이 1초에 두 글자를 적을 수 있다면, 1.51×1092년이 걸려야 구골플렉스를 다 적을 수 있으며, 이는 우주의 나이의 1.51×1010년의 1082배다.
2001년의 연구에 따르면, 구골플렉스를 마이크로소프트 워드 문서에 적을 경우 문서 파일을 저장하는 데에 20조 (20,000,000,000,000) 기가바이트가 필요하다고 한다.(20조 기가바이트 = 2 엑사바이트)[2].
또 다른 관점에서 보면, 만일 구골플렉스를 사람이 읽을 수조차 없는 1포인트 크기로 인쇄 한다고 할 경우, TeX의 표준 1포인트 글자는 개당 0.35145989mm의 글자폭을 가지므로[3], 한 줄로 인쇄하면 약 3.5×1096 미터 길이가 된다. 이 또한 관측 가능한 우주의 직경인 약 8.80×1026 미터 (930억 광년)를 아득히 초과한다.
1구골조차도 관측 가능한 우주에 존재하는 모든 수소원자의 개수 (약 1079 에서 1081개 사이)[4] 보다 클 것으로 여겨진다. 1구골은 또한 대폭발 이후의 시간을 플랑크 시간 단위로 잰 것 (8 × 1060)[출처 필요] 보다도 큰 수이다.
따라서 실제 세계에서 구골플렉스에 비견할 만한 숫자를 찾는 것은 대단히 어렵다. 양자상태 및 블랙홀 분석에 있어서, 물리학자 돈 페이지는 "태양과 같은 질량의 블랙홀에서 어떤 정보가 소실되는지 여부를 실험을 통해 가리자면 (중략) 어림잡아 101077 번 이상의 계산을 통해서만 블랙홀 증발 이후의 밀도 분포를 대략적으로나마 계산할 수 있다."[5] 고 저술한 바 있다.
또 다른 글에서는, 돈 페이지는 어떤 블랙홀의 상태량 (State function) 이 구골플렉스 단위로 표기되려면 블랙홀의 질량이 안드로메다 은하 전체와 같은 정도여야 한다고 저술하였다.[2]
순수수학에서, 구골플렉스의 양은 다른 거대수 표기법 (테트레이션(tetration), 커누스 윗화살표 표기법(Knuth's up-arrow notation), 스타인하우스-모저 표기법(Steinhaus-Moser notation), 콘웨이 연속 화살표 표기법(Conway chained arrow notation)) 등과 연계하여 사용되곤 한다.
구골플렉스보다 더 큰 수로는, 수학 사상 실제로 사용된 최대의 자연수로 간주되는 그레이엄 수 등이 꼽힌다.
수치해석
구골플렉시안
구골플렉시안(Googolplexian), 구골듀플렉스(Googolduplex), 구골플렉스플렉스(Googolplexplex)는 10구골플렉스 = 에 해당하는 수이다. 1 다음에 0이 구골플렉스(1010100)개 있다.
같이 보기
각주
- ↑ Kasner, Edward (2001). 《Mathematics and the imagination》. Mineola, NY: Dover Publications.
- ↑ 가 나 Page, Don, "How to Get a Googolplex", 3 June 2001.
- ↑ Metric typographic units 23 February 2003.
- ↑ Mass, Size, and Density of the Universe Article from National Solar Observatory, 21 May 2001.
- ↑ Page, Don N., "Information Loss in Black Holes and/or Conscious Beings?", 25 Nov. 1994, for publication in Heat Kernel Techniques and Quantum Gravity, S. A. Fulling, ed. (Discourses in Mathematics and Its Applications, No. 4, Texas A&M University, Department of Mathematics, College Station, Texas, 1995)
외부 링크
- Weisstein, Eric Wolfgang. “Googolplex” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Googolplex” (영어). 《PlanetMath》.
여담으로 구골은 10의 100승이다.
- 출처가 필요한 글/2009년 9월
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 큰 수