본문으로 이동

네프 가역층

한울위키, 우리 모두의 백과사전.

대수기하학에서 네프 가역층(nef可逆層, 영어: nef invertible sheaf)은 부분 대수 곡선에 제한하였을 때 그 차수가 항상 음이 아닌 정수가 되는 가역층이다.

정의

K 위의 완비 대수다양체 X 위의 가역층 이 다음 조건을 만족시킨다면, 네프 가역층이라고 한다.

모든 기약 완비 대수 곡선 CX에 대하여, Xc1()0

여기서

c1()A1(X)

은 1차 천 특성류이다.

네프 가역층에 대응하는 카르티에 인자네프 인자(영어: nef divisor)라고 한다.

성질

모든 풍부한 가역층은 네프 가역층이다.

역사

“네프”(영어: nef)라는 용어는 마일스 앤서니 리드(영어: Miles Anthony Reid)가 도입하였으며,[1] “수치 효과적”(영어: numerically effective) 또는 “수치적 결과적 자유”(영어: numerically eventually free)의 머리글자이다.

각주

  1. Reid, Miles Anthony (1983). 〈Minimal models of canonical 3-folds〉 (영어). 《Algebraic Varieties and Analytic Varieties (Tokyo, 1981)》. Advanced Studies in Pure Mathematics 1. North-Holland. 131–180쪽. ISBN 0-444-86612-4. MR 0715649. 

모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).