명제 논리
명제 논리(命題論理, 영어: propositional logic)는 내부 구조가 없는 명제에 논리합이나 부정 따위의 논리 연산을 가하여 구성한 명제들을 다루는 논리 체계이다.[1]:30, Chapter 3
정의
문법
집합 가 주어졌다고 하자. 그렇다면, 에 대한 명제 논리의 언어 는 다음과 같은 기호들로 구성된다.
- 각 에 대하여, 원자 명제(原子命題, 영어: atomic proposition)
- 부정(否定, 영어: negation) 과 실질적 함의(實質的含意, 영어: material implication)
- 다른 논리 연산 기호들은 이 두 논리 연산을 통해 나타낼 수 있으므로 사용할 필요가 없다.
- 다른 함수적 완전 집합을 사용하여도 좋다.
명제 논리의 논리식(論理式, 영어: (well-formed) formula)은 다음 문법을 따르는 명제 논리 기호들의 문자열이다.
- 모든 원자 명제는 논리식이다.
- 논리식 , 에 대하여, 와 는 논리식이다.
주어진 논리 체계의 문장(文章, 영어: sentence)은 자유 변수를 갖지 않는 논리식으로 정의된다. 명제 논리의 논리식은 변수를 포함하지 않으므로 모든 논리식은 문장이다.
공리와 추론 규칙
명제 논리의 추론 규칙과 공리 기본꼴들은 (임의의 논리식을 나타내는 기호 , , 를 사용하여) 다음과 같이 나타낼 수 있다.
- 추론 규칙
- 공리 기본꼴
공리와 추론 규칙 (부정과 논리합을 사용할 경우)
명제 논리는 또 다른 함수적 완전 집합 을 사용하여 전개할 수 있으며, 이 경우 명제 논리의 추론 규칙과 공리 기본꼴들은 (임의의 논리식을 나타내는 기호 , , 를 사용하여) 다음과 같이 나타낼 수 있다.
- 추론 규칙
- 공리 기본꼴
- (배중률)
의미론
명제 논리의 모든 논리식의 집합을 라고 표기하자. 그렇다면 명제 논리의 구조(構造, 영어: structure)는 다음 조건들을 만족시키는 함수 이다.
- 모든 논리식 에 대하여,
- 모든 논리식 , 에 대하여,
(여기서 , 는 메타 언어의 논리합·논리곱 기호이다.)
논리식 와 구조 에 대하여 이 성립한다면, 가 를 만족(滿足, 영어: satisfy)시킨다고 하며, 이를
로 표기한다.
명제 논리의 논리식의 집합(즉, 의 부분 집합)을 명제 논리의 이론(理論, 영어: theory)이라고 한다. 명제 논리의 이론 와 구조 가 주어졌을 때, 임의의 에 대하여 라면, 가 의 모형(模型, 영어: model)이라고 하며, 이를
로 표기한다. 모형을 갖는 이론을 만족 가능 이론(滿足可能理論, 영어: satisfiable theory)이라고 한다.
성질
명제 논리는 건전성, 완전성, 콤팩트성 정리를 만족시킨다.
논리 연산과 함수적 완전 집합
개의 원자 명제로 구성된 명제 논리의 논리식이 가질 수 있는 진리표는 총 개이다. 특히, 명제 논리는 총 16개의 (서로 동치가 아닌) 2항 논리 연산이 존재하며, 이들은 다음과 같다.
| 모순 명제 | 논리곱 | 비함의 | 역비함의 | 부정 논리합 | 첫째 성분 | 둘째 성분 | 실질적 동치 | ||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 항진 명제 | 부정 논리곱 | 실질적 함의 | 역함의 | 논리합 | 첫째 성분의 부정 | 둘째 성분의 부정 | 배타적 논리합 | ||
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
주어진 명제 논리의 2항 이하의 논리 연산의 집합으로부터 구성된 논리식이 모든 진리표를 나타낼 수 있고, 임의의 한 논리 연산을 제거하였을 때 나타낼 수 없는 진리표가 존재하게 된다면, 이 집합을 (극소) 함수적 완전 집합((極小)函數的完全集合, 영어: (minimal) functionally complete set)이라고 한다. 명제 논리의 극소 함수적 완전 집합은 정확히 다음과 같다.[2]:132
- 크기 1 (총 2개)
- 크기 2 (총 18개)
- 크기 3 (총 6개)
- 크기 4 이상의 극소 함수적 완전 집합은 존재하지 않는다.
같이 보기
각주
- ↑ Srivastava, S. M. (2008). 《A Course on Mathematical Logic》 (영어). Universitext. New York, NY: Springer. doi:10.1007/978-0-387-76277-7. ISBN 978-0-387-76275-3. LCCN 2008920049.
- ↑ Wernick, William (1942년 1월). “Complete Sets of Logical Functions” (영어). 《Transactions of the American Mathematical Society》 51 (1): 117-132. doi:10.2307/1989982. ISSN 0002-9947. JSTOR 1989982.
외부 링크
- “Propositional calculus” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Propositional calculus” (영어). 《Wolfram MathWorld》. Wolfram Research.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- CS1 - 영어 인용 (en)
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- 글로벌세계대백과를 인용한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 명제 논리
- 고전 논리