수학적 형태학
수학적 형태학(영어: Mathematical morphology, MM)은 집합론, 격자론, 위상수학, 그리고 무작위 함수에 기반한 기하학적 구조를 분석하고 처리하는 이론과 기술이다. MM은 대부분 디지털 이미지에 적용되지만, 그래프, 폴리곤 메시, 솔리드, 그리고 많은 공간 구조에도 적용할 수 있다.
크기, 모양, 볼록성, 연결성, 그리고 지오데식 거리같은 위상수학적 그리고 기하학적 연속공간 개념은 MM에 의해서 연속 공간과 이산 공간 모두에 소개되었다. MM은 또한 이미지를 위의 특성화에 따르도록 이미지를 바꾸는 연산의 집합으로 이루어진 형태학적 디지털 화상 처리의 근본이다.
기본 형태학적 연산은 침식, 팽창, 열기과 닫기가 있다.
MM은 원래 이진 이미지를 위해서 만들어졌고, 나중에 회색조 함수와 이미지로 확장되었다. 잇따라 나온 완비 격자로의 일반화는 오늘날 MM의 이론적인 근원으로 넓게 받아들여진다.
이진 형태학
이진 형태학에서, 이미지는 어떤 d차원의 유클리드 공간 이나 정수 격자 의 부분 집합으로 볼 수 있다.
구조적 요소
이진 형태학의 기본 아이디어는 이미지를 간단하고 미리 정의된 모양으로 탐색해서 이 그림에서 모양이 얼마나 맞거나 맞지 않는지를 판단하는 것이다. 이 간단한 "탐색"은 구조적 요소라고 부르고, 이진 이미지(즉, 공간이나 격자의 부분집합)이다.
이것이 구조적 요소로 사용하는 예시들이다(B로 표기하였다):
- 일 때, B는 원점을 중심으로 하고 반지름이 r인 열린 디스크이다.
- 일 때, B는 3x3 사각형으로, B={(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)}이다.
- 일 때, B는 다음으로 주어지는 "십자 모양"이다: B={(-1,0), (0,-1), (0,0), (0,1), (1,0)}.
기본 연산자
기본 연산은 민코프스키 덧셈과 강하게 관련된 이동 불변 (병진 불변) 연산이다.
E를 유클리드 공간이나 정수 격자로, A를 E에 있는 이진 이미지라고 하자.
침식
구조적 요소 B에 대한 이진 이미지 A의 침식은 다음과 같이 정의한다:
- ,
이 때, Bz는 B를 벡터 z에 대해서 평행이동한 것이다. 즉, , 이다.
구조적 요소 B가 중심을 가지고(예: 원판이나 정사각형), 중심이 E의 원점에 위치하면, B에 대한 A의 침식은 by B가 A의 내부에서 움직일 때의 B의 중심의 자취로 생각할 수 있다. 예를 들어, 원점을 중심으로 하고 한 변의 길이가 10인 정사각형을 원점을 중심으로 하고 반지름이 2인 원판으로 하는 침식은 원점을 중심으로 하고 한 변이 6인 정사각형이다.
B에 대한 A의 침식은 다음과 같은 표현으로도 쓸 수 있다: .
적용 예시: 검은 사진의 팩스를 받았다고 가정하자. 전부 새는 펜으로 쓴 것 같아 보인다. 침식 과정은 두꺼운 선을 얇게 만들고 글자 "o"의 구멍을 검출할 수 있다.
팽창
A를 구조적 요소 B로 팽창시킨 것은 다음과 같이 정의된다:
여기서 Ab는 A를 b로 평행이동 시킨 것이다.
팽창은 가환 연산이기 때문에 다음과 같이 쓸 수 있다: .
B가 원점을 중심으로 두고 있다면, A를 B로 팽창시킨 것은 B의 중심이 A의 내부에서 움직일 때 B에 있는 점들의 궤적으로 이해할 수 있다. 크기가 10이고 원점에 중심을 둔 정사각형을 마찬가지로 원점을 중심으로 둔 반지름이 2인 원판으로 팽창시키면 원점을 중심으로 하고 꼭짓점이 둥근 크기가 14인 정사각형이 된다. 둥근 꼭짓점의 반지름은 2이다.
팽창은 다음을 통해서도 얻을 수 있다: , 이 때 Bs는 B의 대칭이다. 즉, 이다.
적용 예시: 팽창은 침식의 쌍대연산이다. 매우 가는 선으로 그린 그림은 "팽창"하면 두꺼운 선으로 만들 수 있다. 이 말을 파악하기 가장 쉬운 방법은 같은 팩스나 글씨를 더 두꺼운 펜으로 쓴 것을 생각하는 것이다.
열기
A를 B로 연 것은 A를 B로 침식하고, 잇따라 B로 팽창 한 것이다:
- .
열기는 이렇게도 표현할 수 있다: . 구조적 요소 B를 이미지 A안에서 움직일 때의 자취로 생각한 것이다. 한 변의 길이가 10인 정사각형의 경우에 반지름이 2인 원판을 구조적 요소일 때, 열기는 한 변의 길이가 10이고 모서리의 반지름이 2인 둥근 사각형이다.
적용 예시: 누가 방수 코팅된 종이에 메모를 해서 온통 뿌리에 잔뿌리가 뻩은 것처럼 있다고 가정하자. 이 때, 열기는 본질적으로 내용은 보존하면서 "가는 선"을 제거한다. 부작용은 무엇이든지 둥글게 만든다는 것이다. 뾰족한 모서리는 점차 사라질 것이다.
닫기
A를 B로 닫은 것은 A를 B로 팽창하고, 잇따라 B로 침식시킨 것이다:
- .
닫기는 으로도 쓸 수 있고, 여기서 Xc는 E에 대한 X의 여집합이고 다(즉, 이다). 위의 말은 닫기는 이미지 A의 외부에서 움직이는 구조적 요소의 자취의 여집합이라는 것을 의미한다.
기본 연산자의 특성
다음은 기본 이진 형태학적 연산자(침식, 팽창, 열기 그리고 닫기)의 특성이다:
- 병진 불변이다.
- 단조증가이다. 즉, 이면 이고 , 등이다.
- 팽창은 가환 연산이다.
- E의 원점이 구조적 요소 B에 있으면 이다.
- 결합법칙을 만족한다. 즉, 이다. 게다가, 침식은 이 된다.
- 침식과 팽창은 쌍대성 을 만족한다.
- 열기와 닫기도 쌍대성 을 만족한다.
- 팽창은 합집합에서 분배법칙이 성립한다.
- 침식은 교집합에서 분배법칙이 성립한다.
- 팽창은 침식의 의사역행렬이고 반대로도 성립한다: 이면 이다.
- 열기와 닫기는 멱등적이다.
- 열기는 역 확장적이고 닫기는 확장적이다. 즉, 이고, 이다.
다른 연산자와 도구
같이 보기
- 화상 처리 소프트웨어의 비교
참고 문헌
- Image Analysis and Mathematical Morphology by Jean Serra, ISBN 0-12-637240-3 (1982)
- Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances by Jean Serra, ISBN 0-12-637241-1 (1988)
- An Introduction to Morphological Image Processing by Edward R. Dougherty, ISBN 0-8194-0845-X (1992)
- Morphological Image Analysis; Principles and Applications by Pierre Soille, ISBN 3-540-65671-5 (1999), 2nd edition (2003)
- Mathematical Morphology and its Application to Signal Processing, J. Serra and Ph. Salembier (Eds.), proceedings of the 1st International workshop on mathematical morphology and its applications to signal processing (ISMM'93), ISBN 84-7653-271-7 (1993)
- Mathematical Morphology and Its Applications to Image Processing, J. Serra and P. Soille (Eds.), proceedings of the 2nd international symposium on mathematical morphology (ISMM'94), ISBN 0-7923-3093-5 (1994)
- Mathematical Morphology and its Applications to Image and Signal Processing, Henk J.A.M. Heijmans and Jos B.T.M. Roerdink (Eds.), proceedings of the 4th international symposium on mathematical morphology (ISMM'98), ISBN 0-7923-5133-9 (1998)
- Mathematical Morphology: 40 Years On, Christian Ronse, Laurent Najman, and Etienne Decencière (Eds.), ISBN 1-4020-3442-3 (2005)
- Mathematical Morphology and its Applications to Signal and Image Processing, Gerald J.F. Banon, Junior Barrera, Ulisses M. Braga-Neto (Eds.), proceedings of the 8th international symposium on mathematical morphology (ISMM'07), ISBN 978-85-17-00032-4 (2007)
- Mathematical morphology: from theory to applications, Laurent Najman and Hugues Talbot (Eds). ISTE-Wiley. ISBN 978-1-84821-215-2. (520 pp.) June 2010
외부 링크
- Online course on mathematical morphology 보관됨 2011-05-15 - 웨이백 머신, by Jean Serra (in English, French, and Spanish)
- Center of Mathematical Morphology, Paris School of Mines
- History of Mathematical Morphology 보관됨 2011-03-04 - 웨이백 머신, by Georges Matheron and Jean Serra
- Morphology Digest, a newsletter on mathematical morphology, by Pierre Soille
- Lectures on Image Processing: A collection of 18 lectures in pdf format from Vanderbilt University. Lectures 16-18 are on Mathematical Morphology, by Alan Peters
- Mathematical Morphology; from Computer Vision lectures, by Robyn Owens
- Free SIMD Optimized Image processing library
- Java applet demonstration
- FILTERS : a free open source image processing library
- Fast morphological erosions, dilations, openings, and closings
- Morphological analysis of neurons using Matlab
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- 웹아카이브 틀 웨이백 링크
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 디지털 기하학
- 영상 처리
- 수학적 형태학
- 형태학