스미스 표준형
선형대수학에서, 스미스 표준형(영어: Smith canonical form)은 주 아이디얼 정역 위에 주어진 임의의 모양의 행렬과 동치인 매우 단순한 꼴의 대각 행렬이다. 스미스 표준형의 존재는 주 아이디얼 정역 위의 유한 생성 자유 가군과 부분 가군의 적절한 기저 사이의 선형 관계는 아주 간단할 수 있다는 사실과 동치이다.
정의
주 아이디얼 정역 (예를 들어, 정수환 또는 체 계수 일변수 다항식환 ) 위의 임의의 행렬 에 대하여, 다음 조건을 만족시키는 가역 행렬 와 및 유한 개의 원소 가 존재한다.
(여기서 는 영행렬이다.) 또한 은 가역원배의 차이를 무시하면 유일하다. 이를 의 스미스 표준형이라고 한다.
알고리즘
행렬의 스미스 표준형은 두 행 또는 두 열을 교환하는 연산과 한 행 또는 열에 다른 행 또는 열의 배수를 더하는 연산을 통해 구할 수 있다. 는 유일 인수 분해 정역이므로, 모든 0이 아닌 원소는 유일한 인수 분해를 갖는다. 임의의 에 대하여, 이 의 소인수의 중복집합의 크기라고 하자.
우선 위의 행렬
을 생각하자. 가 베주 정역이므로, 와 의 최대공약수 에 대하여, 인 가 존재한다. , 라고 하자. 그렇다면 이다. 따라서
은 가역 행렬이며,
이다. 마찬가지로, 왼쪽에 가역 행렬을 곱하여 첫 행 첫 열 성분이 와 의 최대공약수이며 둘째 행 첫 열 성분이 0이도록 만들 수 있다.
이제 일반적인 행렬 를 생각하자. 만약 이라면, 는 이미 스스로의 스미스 표준형이다. 이라고 가정하자. 행과 열의 교환을 통해, 편의상 이라고 가정하자. (보통 과정을 간단하게 만들기 위해 가 가장 작도록 행·열을 교환한다.) 만약 모든 에 대하여 라면, 각 열에 첫 열의 배수를 더하고 각 행에 첫 행의 배수를 더하여, 첫 행과 첫 열의 을 제외한 모든 성분이 0이 되게 만들 수 있다. 만약 인 이 존재한다면, 행과 열의 교환 및 행 또는 열에 다른 행 또는 열의 배수를 더하는 연산을 통해 이거나 라고 가정할 수 있다. (예를 들어, 만약 이지만 라면, 첫 행의 적절한 배수를 둘째 행에서 빼 둘째 행 첫 열의 성분을 0으로 만들고, 마찬가지로 첫 행 둘째 열의 성분을 0으로 만든 뒤, 다시 둘째 행을 첫 행에 더하면, 은 변하지 않으며, 이 바로 오른쪽 성분을 나누지 못하게 된다.) 편의상 라고 하자. 그렇다면
인 가역 행렬 이 존재한다. 따라서
는 가역 행렬이며, 행렬 의 첫 행 첫 열 성분은 이다. 또한 이므로 은
을 만족시킨다. (인 경우에도 가역 행렬의 왼쪽 곱셈을 통해 첫 행 첫 열의 소인수의 수를 감소시킬 수 있다.) 첫 행 첫 열의 원소는 소인수의 수가 줄어들수록 가역원에 가까워져 ‘다른 성분들을 나눌 가능성’이 늘어난다. 따라서 이와 같은 과정을 반복하면 결국 첫 행 첫 열의 성분이 모든 다른 성분을 나누는 행렬을 얻는다. 이제 첫 행의 적절한 배수를 다른 행에 더하고 첫 열의 적절한 배수를 다른 열에 더하면 는 다음과 같은 꼴의 행렬과 동치가 된다.
다시 에 대하여 같은 과정을 반복하면 와 동치인 다음과 같은 꼴의 행렬을 얻는다.
여기서 인 이유는 가 의 성분의 선형 결합이기 때문이다.
위와 같은 과정을 반복하면 결국 스미스 표준형을 얻는다.
예
의 스미스 표준형은 다음과 같이 구할 수 있다.
응용
주 아이디얼 정역 위의 유한 생성 가군의 구조
스미스 표준형을 통해 주 아이디얼 정역 위의 유한 생성 가군의 불변 인자 분해를 유도할 수 있다.
역사
헨리 존 스티븐 스미스의 이름을 땄다.
같이 보기
외부 링크
- 이철희. “스미스 표준형 (Smith normal form)”. 《수학노트》.
- Weisstein, Eric Wolfgang. “Smith normal form” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Smith normal form” (영어). 《nLab》.
- “Smith normal form” (영어). 《PlanetMath》.
- “Example of Smith normal form” (영어). 《PlanetMath》.
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 행렬 분해