스튀름-리우빌 연산자
상미분 방정식 이론에서, 스튀름-리우빌 연산자(Sturm-Liouville演算子, 영어: Sturm–Liouville operator)는 이산 스펙트럼을 갖는 특별한 형태의 2차 미분 연산자이다. 그 고유 함수에 대한 2차 상미분 방정식을 스튀름-리우빌 방정식(Sturm-Liouville方程式, 영어: Sturm–Liouville equation)이라고 하며, 이에 대한 이론을 스튀름-리우빌 이론(Sturm-Liouville理論, 영어: Sturm–Liouville theory)이라고 한다. 모든 2차 상미분 방정식은 항상 스튀름-리우빌 형으로 놓을 수 있다.
정의
실수의 닫힌구간 이 주어졌다고 하자. 그 위의 2차 연속 미분 가능 함수에 대한 스튀름-리우빌 연산자는 다음과 같은 꼴의 2차 미분 연산자이다.
여기서
- 는 양의 실수 값의 연속 미분 가능 함수이다.
- 는 연속 함수이다.
- 는 양의 실수 값의 연속 함수이다. (이를 무게 함수 영어: weight function라고 한다.)
닫힌구간 위의 로뱅 경계 조건(Robin境界條件, 영어: Robin boundary condition)이란 위의 연속 미분 가능 함수에 대한, 다음과 같은 꼴의 경계 조건이다.
여기서, 다음 조건이 성립해야 한다.
- 또는 가운데 하나 이상이 0이 아니며, 마찬가지로 또는 가운데 하나 이상이 0이 아니다.
즉, 와 는 각각 실수 사영 직선 의 두 점의 동차 좌표를 이룬다.
로뱅 경계 조건을 골랐다면, 스튀름-리우빌 연산자는 힐베르트 공간
위의 자기 수반 작용소로 유일하게 확대될 수 있다. 이러한 확대는 선택한 로뱅 경계 조건에 의존한다.
스튀름-리우빌 연산자 의 고유 함수 방정식
즉 선형 상미분 방정식
을 스튀름-리우빌 방정식(영어: Sturm–Liouville equation)이라고 한다. 이 방정식은 선형 상미분 방정식이므로, 와 , 의 값에 따라 해의 공간은 벡터 공간을 이룬다. 스튀름-리우빌 문제는 스튀름-리우빌 미분 연산자의 고윳값을 구하는 문제이다.
성질
고윳값과 고유 함수
위의 무게 함수
에 대한 스튀름-리우빌 연산자
가 주어졌다고 하자. 그렇다면, 그 스펙트럼은 가산 집합이며, 하계를 가지며, 상계를 갖지 않으며, 중복되지 않는다. 즉, 다음과 같이 놓을 수 있다.
각 고윳값 에 대응하는 고유 함수의 공간은 1차원이며, 이는 해당 로뱅 경계 조건을 따르는 연속 미분 가능 함수로 구성된다. 또한, 이 함수는 열린구간 속에서 정확히 개의 영점을 갖는다.
이러한 고유 함수들의 집합 은 (의 내적에 따라 정규화하였을 때) 의 정규 직교 기저를 이룬다. 즉, 다음이 성립한다.
2차 선형 미분 방정식의 스튀름-리우빌 형태로의 환원
모든 2차 선형 상미분 방정식은 좌변에 적당한 적분 인자(integrating factor)를 곱해 스튀름-리우빌 방정식의 꼴로 놓을 수 있다. (2차 편미분 방정식이나, y가 스칼라가 아니라 벡터인 경우에는 성립하지 않는다.)
일반적으로 다음과 같은 2차 선형 상미분 방정식이 주어졌다고 하자.
양변을 P(x)로 나누고, 다시 양변에 적분 인자
를 곱한 뒤, 정리하면 스튀름-리우빌 형 방정식을 얻는다.
예
베셀 방정식
은 양변에 적당한 함수를 곱하면 다음과 같은 스튀름-리우빌 방정식이 된다.
즉, 이 경우 스튀름-리우빌 연산자는
이다.
르장드르 방정식
은 쉽게 스튀름-리우빌 형으로 만들 수 있다.
이므로, 르장드르 방정식은 다음 모양으로 만들 수 있다.
즉, 은 스튀름-리우빌 연산자
의 고윳값이다.
더 복잡한 2차 상미분 방정식
좀 더 복잡한 예로 다음 상미분 방정식을 생각하자.
양변을 x3으로 나누고
다시 양변에 다음과 같은 적분 인자를 곱한다.
그러면 다음과 같은 방정식이 나온다.
이 방정식은 스튀름-리우빌 형으로 바꿀 수 있는데,
이기 때문이다. 따라서 앞서 말한 미분 방정식은 아래의 스튀름-리우빌 미분 방정식과 같다.
즉, 스튀름-리우빌 연산자는 다음과 같다.
역사
자크 샤를 프랑수아 스튀름과 조제프 리우빌의 이름을 땄다.
같이 보기
참고 문헌
- Zettl, Anton (2005). 《Sturm–Liouville theory》 (영어). American Mathematical Society. ISBN 0-8218-3905-5.
- Teschl, Gerald (2012). 《Ordinary differential equations and dynamical systems》 (영어). American Mathematical Society. ISBN 978-0-8218-8328-0.
- Everitt, W. N. (2005). 〈A catalogue of Sturm-Liouville differential equations〉 (PDF) (영어). Hinz, A. M.; Pearson, D. B. (편집). 《Sturm-Liouville Theory, Past and Present》. Birkhäuser. 271–331쪽. doi:10.1007/3-7643-7359-8_12. 2007년 2월 21일에 원본 문서 (PDF)에서 보존된 문서. 2019년 3월 16일에 확인함.
외부 링크
- “Sturm-Liouville operator” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Sturm-Liouville theory” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Sturm-Liouville problem” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Sturm-Liouville equation” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Sturm-Liouville equation” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Sturm-Liouville theory” (영어). 《nLab》.
- 이철희. “스텀-리우빌 이론”. 《수학노트》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 연산자 이론
- 상미분 방정식
- 스펙트럼 이론
- 경계값 문제