연속 함수
| 관련 문서 둘러보기 |
| 미적분학 |
|---|
위상수학과 해석학에서 연속 함수(連續函數, 문화어: 련속함수, 영어: continuous function, continuous map)는 정의역의 점의 ‘작은 변화’에 대하여, 치역의 값 역시 작게 변화하는 함수이다. 즉, 변수가 연속적으로 변할 때 함숫값도 연속적으로 변하는 함수이다. 이는 함숫값에 갑작스러운 변화가 생기지 않는다는 것을 의미한다. 더 정확하게는, 임의의 작은 함숫값의 변화에 대해, 충분히 작은 범위 안에 있는 변수의 함숫값이 그 변화보다 작도록 할 수 있을 때 함수가 연속이라고 한다. 예를 들어 성장하는 중인 나무의 특정 시각 에서의 높이가 라고 하면 함수 는 연속 함수로 볼 수 있다. 반면 특정 시각 에 은행 계좌에 들어있는 돈을 라고 하면 함수 은 돈을 넣거나 뺄 때마다 순간적으로 변하므로 불연속 함수로 볼 수 있다. 19세기까지 수학자들은 다소 직관적인 방식에 의존하여 연속이라는 개념을 사용하였지만, 이후 소위 엡실론-델타 논법을 사용하여 연속을 엄밀하게 정의하였다.
연속 함수는 실수 집합 또는 복소수 집합 사이의 함수에 대하여 정의할 수 있으며, 보다 일반적으로 임의의 거리 공간 또는 위상 공간 사이의 연속 함수를 정의할 수 있다. 두 집합 사이의 함수 가운데 어떤 것들이 연속 함수인지는 집합 위에 정의된 위상에 따라 다르다. 이를테면, 스콧 연속 함수는 스콧 위상을 부여한 원순서 집합 사이의 연속 함수를 일컫는다. 다른 한편, 정의역이나 공역의 거리 구조를 바꾸더라도 위상이 변하지 않는다면 연속 함수의 개념은 변하지 않는다.
연속 함수 조건의 더 강한 형태로는 균등 연속 함수나 립시츠 연속 함수 따위가 있다. 다만, 이 조건들을 정의하려면 위상 공간 구조만으로는 부족하다. 균등 연속 함수의 정의역과 공역은 적어도 균등 공간 구조를 갖추어야 하며, 립시츠 연속 함수가 정의되기 위해서는 거리 공간 구조가 필요하다.
정의
위상 공간 및 사이의 함수 및 점 에 대하여, 다음 두 조건이 서로 동치이다. 이 조건을 만족시키는 를 점 에서 연속(continuous at the point )이라고 한다.
위상 공간 및 사이의 함수 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 함수를 연속 함수라고 한다.
- 임의의 열린집합 에 대하여, 원상 는 열린집합이다.
- 임의의 닫힌집합 에 대하여, 원상 는 닫힌집합이다.
- 는 의 모든 점에서 연속이다.
- 임의의 부분 집합 에 대하여, 항상 이다. 여기서 은 폐포를 일컫는다.
- 임의의 부분 집합 에 대하여, 항상 이다.
위상 공간 및 사이의 함수 가 다음 조건을 만족시킨다면, 를 점렬 연속 함수(點列連續函數, 영어: sequentially continuous function)라고 한다.
- 임의의 점렬 및 점 에 대하여, 만약 라면 이다.
성질
위상 공간 , , 및 연속 함수 및 에 대하여, 그 합성
역시 연속 함수이다.
연속 전단사 함수 의 역함수 는 일반적으로 연속 함수가 아니다. 그러나 만약 가 콤팩트 공간이며, 가 하우스도르프 공간이라면, 는 연속 함수가 된다. 즉, 이 경우 연속 전단사 함수는 위상 동형 사상과 동치이다. 이는 콤팩트 공간 에서 하우스도르프 공간 으로 가는 모든 연속 함수는 닫힌 함수이기 때문이다.
두 위상 공간 , 사이의 연속 함수 에 대하여, 다음이 성립한다.
임의의 두 위상 공간 , 사이의 연속 함수는 항상 점렬 연속 함수이다. 만약 가 제1 가산 공간이라면, 와 사이의 함수에 대하여 연속 함수와 점렬 연속 함수가 서로 동치이다.
집합 및 위상 공간들의 족 및 함수족 이 주어졌을 때, 임의의 위상 공간 및 함수 에 대하여, 다음 두 조건이 서로 동치이다.
- 위에 모든 를 연속 함수로 만드는 가장 엉성한 시작 위상을 부여하였을 때, 는 연속 함수이다.
- 임의의 에 대하여, 는 연속 함수이다.
특히, 곱공간을 공역으로 하는 함수가 연속 함수일 필요충분조건은 성분별로 연속 함수인 것이다. 마찬가지로, 끝 위상과 몫공간에 대해서도 유사한 명제가 성립한다.
균등 공간 사이의 연속 함수
균등 공간 사이에서, 모든 균등 연속 함수는 연속 함수이다. 그 역은 일반적으로 성립하지 않는다. 정의역이 콤팩트 균등 공간인 경우, 연속성은 균등 연속성과 동치이다 (하이네-칸토어 정리).
거리 공간에서의 연속 함수
두 거리 공간 및 사이의 함수 및 점 에 대하여, 다음 세 조건이 서로 동치이다.
- 는 에서 연속이다.
- 임의의 양의 실수 에 대하여, 다음 조건을 만족시키는 양의 실수 이 존재한다.
- 임의의 에 대하여, 만약 라면, 이다.
- 는 에서 점렬 연속이다. 즉, 임의의 점렬 에 대하여, 만약 라면 이다.
거리 공간 사이에서, 모든 립시츠 연속 함수는 균등 연속 함수이며, 따라서 연속 함수이다.
실수값 연속 함수
임의의 위상 공간 위의 두 연속 함수
에 대하여, 다음이 성립한다.
- 는 연속 함수이다.
- 는 연속 함수이다.
- 상수 함수는 연속 함수이므로, 만약 가 임의의 실수 라면, 는 연속 함수이다. 특히, 인 경우 는 연속 함수이다.
- 만약 모든 에 대하여 이라면, 는 연속 함수이다.
실수 위의 함수
어떤 구간 및 위상 공간 사이의 함수 및 실수 에 대하여, 다음을 정의하자.
실수 구간 으로부터 위상 공간 로 가는 함수 및 임의의 실수 에 대하여, 다음 두 조건이 서로 동치이다.
- 는 에서 연속이다.
- 는 에서 좌연속이며 우연속이다.
예
실수선에 표준적인 위상을 정의하였을 때, 다음 함수들은 연속 함수이다.
다음 함수는 연속 함수가 아니다.
참고 문헌
- Munkres, James R. (2000). 《Topology》 2판 (영어). Prentice Hall. ISBN 978-0-13-181629-9. MR 0464128. Zbl 0951.54001.
같이 보기
외부 링크
- “Continuous function” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Continuous mapping” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Continuous function” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Continuous map” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Piecewise continuous” (영어). 《Wolfram MathWorld》. Wolfram Research.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 잘못된 파일 링크가 포함된 문서
- 문화어 표기를 포함한 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 연속 함수
- 미적분학
- 일반위상수학
- 함수의 종류