극한 (범주론)
수학의 한 분야인 범주론에서 극한(極限, 영어: limit)은 수학의 여러 분야에서 사용되는 보편적 구성들(예로서 곱이나 역극한 등)이 갖는 공통된 성질을 잡아내어 일반화시킨 개념이다. 그 쌍대 개념인 쌍대극한(雙對極限, 영어: colimit)은 서로소 합집합이나 직합 등의 일반화이다. 극한과 쌍대극한은 보편 사상 및 수반 함자 등의 범주론적 개념과 밀접한 연관이 있다.
정의
뿔을 통한 정의
함자 의 뿔(영어: cone) 은 다음 데이터로 구성된다.
- 의 대상
- 모든 대상 에 대하여, 의 사상
이 데이터는 다음 가환 조건을 만족시켜야 한다.
- 모든 대상 및 사상 에 대하여,
함자 의 극한은 다음 보편 성질을 만족시키는 뿔 이다.
- 모든 의 뿔 에 대하여, 다음을 만족시키는 유일한 사상 이 존재한다.
- 모든 대상 에 대하여,
주어진 함자의 극한은 유일한 동형 아래 유일하다. 이는 극한의 보편 성질에 의한다. 만약 극한의 정의에서 사상의 유일성 조건을 존재로 약화하면 약한 극한(영어: weak limit)의 개념을 얻는다.
함자 의 쌍대뿔(영어: cocone) 은 다음 데이터로 구성된다.
- 의 대상
- 모든 대상 에 대하여, 의 사상
이 데이터는 다음 가환 조건을 만족시켜야 한다.
- 모든 대상 및 사상 에 대하여,
함자 의 쌍대극한은 다음 보편 성질을 만족시키는 쌍대뿔 이다.
- 모든 의 쌍대뿔 에 대하여, 다음을 만족시키는 유일한 사상 이 존재한다.
- 모든 대상 에 대하여,
보편 성질에 따라, 주어진 함자의 쌍대극한은 유일한 동형 아래 유일하다. 만약 사상의 유일한 존재를 존재로 대체하면 약한 쌍대극한(영어: weak colimit)의 정의를 얻는다.
끝 대상을 통한 정의
의 끝 대상이다. 여기서
는 대각 함자이며,
는 1의 유일한 대상의 상이 인 상수 함자이다. 끝 대상은 유일한 동형 아래 유일하므로, 극한은 유일한 동형 아래 유일하다. 함자의 정의역이 작은 범주인 경우, 끝 대상을 통한 극한의 정의는 뿔을 통한 정의의 재서술에 불과하다.
만약 가 작은 범주라면, 함자 의 쌍대극한은 쉼표 범주
의 시작 대상이다. 시작 대상은 유일한 동형 아래 유일하므로, 쌍대극한은 유일한 동형 아래 유일하다. 함자의 정의역이 작은 범주인 경우, 시작 대상을 통한 쌍대극한의 정의는 쌍대뿔을 통한 정의의 재서술에 불과하다.
표현을 통한 정의
만약 가 작은 범주라면, 함자 의 극한은 다음 데이터로 구성된다.
- 대상
- 자연 동형 ()
여기서 은 집합의 범주 에서의 극한이며, 이는 구체적으로 정의될 수 있다. 표현 가능 함자의 표현은 유일한 동형 아래 유일하므로, 극한은 유일한 동형 아래 유일하다. 극한의 표현을 통한 정의와 뿔을 통한 정의의 동치는 요네다 보조정리에 의한다.
만약 가 작은 범주라면, 함자 의 쌍대극한은 다음 데이터로 구성된다.
- 대상
- 자연 동형 ()
여기서 은 집합의 범주 에서의 극한이며 (쌍대극한이 아닌 데 주의하자), 이는 구체적으로 정의될 수 있다. 표현 가능 함자의 표현은 유일한 동형 아래 유일하므로, 쌍대극한은 유일한 동형 아래 유일하다. 쌍대극한의 표현을 통한 정의와 쌍대뿔을 통한 정의의 동치는 요네다 보조정리에 의한다.
예
특별한 경우에 붙은 이름은 다음과 같다.
| 를 지표 범주로 하는 극한 | 를 지표 범주로 하는 쌍대극한 | |
|---|---|---|
| 공(空)범주 | 끝 대상 | 시작 대상 |
| 이산 범주 | 곱 | 쌍대곱 |
| 상향 원순서 집합 | 사영 극한/역극한 | 귀납적 극한/직접적 극한 |
| 동등자 | 쌍대동등자 | |
| 당김 | 밂 |
참고 문헌
- Mac Lane, Saunders (1998). 《Categories for the working mathematician》 2판 (영어). Graduate Texts in Mathematics 5. Springer. doi:10.1007/978-1-4757-4721-8. ISBN 978-1-4419-3123-8. ISSN 0072-5285. MR 1712872. Zbl 0906.18001.
외부 링크
- “Inductive limit” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Projective limit” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “System (in a category)” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Limit” (영어). 《nLab》.
- “Colimit” (영어). 《nLab》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- CS1 관리 - 추가 문구
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 극한 (범주론)