직교 여원 격자
| 대수 구조 |
|---|
| 파일:Algebraic structures.png |
순서론에서 직교 여원 격자(直交餘元格子, 영어: orthocomplemented lattice, ortholattice)는 불 대수와 유사한 여원 연산을 갖는 유계 격자이다. 그러나 불 대수와 달리 분배 격자일 필요가 없으며, 심지어 모듈러 격자도 아닐 수 있다.
정의
순서 반대 보존성의 동치 조건
유계 격자 위의 함수 에 대하여 다음 세 조건이 서로 동치이다.
증명:
직교 여원 격자
유계 격자 위의 직교 여원(直交餘元, 영어: orthocomplementation) 은 다음 네 조건들을 만족시키는 함수이다.[1]:52, §II.14[2]:§2
직교 여원 격자(영어: orthocomplemented lattice)는 직교 여원이 부여된 격자이다. 이들의 모임은 대수 구조 다양체를 이룬다. 두 직교여원 격자 사이의 직교 여원 격자 사상(영어: orthocomplemented lattice morphism) 은 다음 조건들을 만족시키는 함수이다.
- 격자 사상이다. 즉, 임의의 에 대하여 이며, 이다.
- 임의의 에 대하여 이다.
이 경우, 임의의 에 대하여
이므로 이는 자동적으로 유계 격자 사상이 된다.
가환성
직교 여원 격자 에서, 두 원소 가 다음 조건을 만족시키면 가 와 가환한다(영어: commute)고 한다.[1]:52, §II.14[2]:§2
이는 로 표기한다.
가환 관계는 일반적으로 대칭 관계가 아니다. 즉, 이라면일 필요는 없다.
직교 여원 격자 의 두 원소 에 대하여, 라면 이다.[1]:52, Lemma II.14.1
직교모듈러 격자
직교 여원 격자 에 대하여 다음 조건들이 서로 동치이며, 이를 만족시키는 직교 여원 격자를 직교모듈러 격자(영어: orthomodular lattice)라고 한다.
- 임의의 에 대하여, 이라면 이다 (즉, 이다).[2]:§2[1]:53, Theorem II.21
- 임의의 에 대하여, 이다.[2]:§2
- 가환 관계는 대칭 관계이다. 즉, 임의의 에 대하여, 이라면 이다.[2]:Proposition 2.2(2)[1]:53, Theorem II.21
- 임의의 에 대하여, 이라면 이다.[2]:Proposition 2.2(3)
- 임의의 에 대하여, 이자 이라면 이다.[2]:Proposition 2.1(2)[1]:54, Exercise II.14.7(i)
- 임의의 에 대하여, 라면 이다.[1]:54, Exercise II.14.7(ii)
- 육각형 격자를 부분 격자로 갖지 않는다.[2]:Proposition 2.1(3)
여기서 육각형 격자(영어: hexagon lattice)는 다음과 같은 유계 격자이다.
성질
함의 관계
모든 불 대수는 직교 여원 격자이다.
직교여원 격자가 분배 격자일 필요는 없다.
직교 여원 격자 에 대하여 다음 조건들이 서로 동치이다.
모든 모듈러 직교 여원 격자는 직교모듈러 격자이지만,[1]:54, Exercise II.14.6 (이름과 달리) 그 역은 일반적으로 성립하지 않는다.
유일성
주어진 격자 위에 직교 여원이 유일할 필요는 없다. 다만, 분배 격자 위의 직교 여원은 만약 존재한다면 유일하다.
증명:
직교 여원을 갖는 분배 격자를 불 대수라고 한다.
범주론적 성질
직교 여원 격자와 직교 여원 격자 준동형의 구체적 범주 는 대수 구조 다양체의 범주이므로 완비 범주이자 쌍대 완비 범주이며, 자유 대상이 존재한다.
예
양자 논리
힐베르트 공간 의 부분 벡터 공간들은 포함 관계에 대하여 유계 격자를 이룬다. 이 경우, 직교여원
을 정의하면, 이는 직교모듈러 격자를 이룬다. "직교 여원"이라는 용어는 이에서 비롯하였다. 이 사실은 양자 논리에서 중요한 역할을 한다.
대합환
가 대합환이라고 하자. 그렇다면,
로 놓으면, 은 직교모듈러 격자를 이룬다.[1]:54, Exercise II.14.11(a,b) 또한, 이 경우
이다.[1]:54, Exercise II.14.11(c) 즉, 환으로서의 가환성 개념이 직교 여원 격자로서의 가환성 개념과 일치한다.
참고 문헌
- ↑ 가 나 다 라 마 바 사 아 자 차 Birkhoff, Garrett (1967). 《Lattice theory》 3판 (영어). AMS Colloquium Publications 25. American Mathematical Society.
- ↑ 가 나 다 라 마 바 사 아 Bruns, Gunter; Harding, John (2000). 〈Algebraic aspects of orthomodular lattices〉 (PDF) (영어). Coecke, Bob; Moore, David; Wilce, Alexander (편집). 《Current research in operational quantum logic: algebras, categories, languages》. Fundamental Theories of Physics 111. Springer-Verlag. 37–65쪽. doi:10.1007/978-94-017-1201-9_2. ISSN 0168-1222. 2008년 4월 18일에 원본 문서 (PDF)에서 보존된 문서. 2016년 7월 6일에 확인함.
- ↑
近藤 溢血 (2006). “On orthocomplemented lattices with Elkan’s law” (PDF) (영어). 《数理解析研究所講究録》 1503: 10–16.|저자=에 templatestyles stripmarker가 있음(위치 1) (도움말)
외부 링크
- “Lattice with complements” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Ockham algebra” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Orthomodular lattice” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Complemented lattice” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Uniquely complemented lattice” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Orthomodular lattice” (영어). 《nLab》.
- “Complemented lattice” (영어). 《nLab》.
- Jipsen, Peter. “Ortholattices” (영어). 《Mathematical Structures》.
- Jipsen, Peter. “Complemented lattices” (영어). 《Mathematical Structures》.
- Jipsen, Peter. “Complemented modular lattices” (영어). 《Mathematical Structures》.
- Jipsen, Peter. “Orthomodular lattices” (영어). 《Mathematical Structures》.
- Jipsen, Peter. “Modular ortholattices” (영어). 《Mathematical Structures》.
- Armstrong, John (2009년 5월 7일). “Orthogonal complements and the lattice of subspaces” (영어). 《The Unapologetic Mathematician》.
- CS1 관리 - 추가 문구
- CS1 - 영어 인용 (en)
- 일본어 표기를 포함한 문서
- 인용 오류 - 보이지 않는 문자
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 격자 이론