콜모고로프-아르놀트-모저 정리
해밀턴 역학에서 콜모고로프-아르놀트-모저 정리(Колмогоров-Арнольд-Moser定理, 영어: Kolmogorov–Arnold–Moser theorem, 약자 KAM)는 적분가능계에 충분히 작은 섭동항을 추가하였을 때, 거의 모든 준주기적 해들이 살아남는다는 정리이다.
정의
차원 심플렉틱 다양체 위의 적분가능계의 작용-각도 변수가 라고 하자 (, ). 즉, 해밀토니언 함수 는 작용 변수에만 의존하고, 각도 변수에 의존하지 않는다. 이 계의 운동 방정식은
이며, 따라서 들은 운동 상수이며, 계의 에 대한 주기는 이다. 만약 들의 비가 유리수라면 이는 해밀턴 방정식의 주기적 해를 이루며, 무리수라면 이는 해밀턴 방정식의 준주기적(영어: quasiperiodic) 해를 이룬다. 각 에 대응하는 차원 원환면을 불변 원환면(영어: invariant torus)이라고 한다.
이제, 해밀토니언 함수에 미세한 적분 불가능 섭동을 주자.
그렇다면, 만약 가 충분히 작다면 불변 원환면들이 그대로 유지되는지 물을 수 있다. 콜모고로프-아르놀트-모저 정리는 이 문제에 대한 해답을 제공한다.
구체적으로, 임의의 벡터 에 대하여 다음 조건을 만족시키는 상수 가 존재한다면, 가 디오판토스 벡터(영어: Diophantine vector)라고 하자.
르베그 측도에 대하여 거의 모든 벡터가 디오판토스 벡터임을 보일 수 있다.
콜모고로프-아르놀트-모저 정리에 따르면, 만약 임의의 에 대하여
충분히 작은 에 대하여, 섭동된 해밀토니언 에 대하여 주기가 인 준주기적 해가 존재한다. (만약 에 대한 해가 주기적이더라도, 에 대한 해는 일반적으로 준주기적이다.)
여기서 "충분히 작은 에 대하여"는 구체적으로 다음과 같은 뜻이다.
가 의 복소수 닫힌 근방
으로 해석적 연속될 수 있다고 하고,
라고 할 때, 이라면 -디오판토스 벡터에 대하여 준주기적인 해가 존재하게 되는 양의 실수 이 존재한다. (이 실수는 디오판토스 벡터의 정의에서의 상수 에 의존한다.)
역사
안드레이 콜모고로프[1] · 블라디미르 아르놀트[2] · 위르겐 모저[3] 가 증명하였다.
같이 보기
각주
- ↑ .N. Kolmogorov. On the Conservation of Conditionally Periodic Motions under Small Perturbation of the Hamiltonian. Dokl. Akad. Nauk SSR, 98:527–530, 1954
- ↑ Arnol'd, V. I. "Proof of a Theorem of A. N. Kolmogorov on the Preservation of Conditionally Periodic Motions under a Small Perturbation of the Hamiltonian." Uspehi Mat. Nauk 18, 13-40, 1963
- ↑ Moser, J. "On Invariant Curves of Area-Preserving Mappings of an Annulus." Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1-20, 1962
- Arnold, Vladimir Igorevich (1989). 《Mathematical Methods of Classical Mechanics》 (영어). Springer. ISBN 0-387-96890-3.
- Rangarajan, Govindan (1998년 4월). “Kolmogorov-Arnold-Moser theorem: Can planetary motion be stable?” (영어) 3 (4): 43–53. doi:10.1007/BF02834611. ISSN 0971-8044.
- Pöschel, Jürgen (2001). 〈A lecture on the classical KAM theorem〉 (PDF) (영어). 《Smooth ergodic theory and its applications》. Proceedings of Symposia in Pure Mathematics 69. American Mathematical Society. 707–732쪽. ISBN 978-0-8218-2682-9.
- de la Llave, Rafael (2001). 〈A tutorial on KAM theory〉 (영어). 《Smooth ergodic theory and its applications》. Proceedings of Symposia in Pure Mathematics 69. American Mathematical Society. 707–732쪽. ISBN 978-0-8218-2682-9.
- Cherchia, Luigi; Mather, John N. “Kolmogorov-Arnold-Moser Theory” (영어). 《Scholarpedia》 5 (9): 2123. doi:10.4249/scholarpedia.2123. ISSN 1941-6016.
- Dumas, H. Scott (2014). 《The KAM story: a friendly introduction to the content, history, and significance of classical Kolmogorov–Arnold–Moser Theory》 (영어). World Scientific Publishing. doi:10.1142/8955. ISBN 978-981-4556-58-3.
- Wayne, C. Eugene (1996). 〈An introduction to KAM theory〉 (PDF) (영어). 《Dynamical systems and probabilistic methods in partial differential equations》. Lectures in Applied Mathematics 31. American Mathematical Society. 29쪽. ISBN 978-0-8218-0368-4.
- Broer, Henk W. (2004). “KAM theory: the legacy of Kolmogorov’s 1954 paper” (영어). 《Bulletin of the American Mathematical Society》 41 (4): 507–521. doi:10.1090/S0273-0979-04-01009-2. ISSN 0273-0979.
외부 링크
- Weisstein, Eric Wolfgang. “Kolmogorov-Arnold-Moser theorem” (영어). 《Wolfram MathWorld》. Wolfram Research.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 고전역학