힐베르트 스킴
대수기하학에서, 힐베르트 스킴(영어: Hilbert scheme)은 어떤 스킴의 부분 스킴들의 모듈라이 공간인 스킴이다. 모든 사영 대수다양체는 힐베르트 스킴을 가진다. 이 경우, 섬세한 모듈러스 공간의 정의에서, 부분 스킴의 족은 평탄 사상을 뜻한다. 평탄 사상의 올들은 같은 힐베르트 다항식을 가지므로, 힐베르트 스킴은 각 힐베르트 다항식에 대응하는 성분들로 분해된다.
정의
다음이 주어졌다고 하자.
그렇다면, 위의, 매개 변수 공간 에 대한 의 부분 스킴의 족(영어: family of subschemes of parametrized by )은 닫힌 부분 스킴
가운데, 표준적 -스킴 사상
이 평탄 사상인 것이다. 에 대한 의 부분 스킴의 족의 집합을 라고 하자.
-스킴 사상 및 위의 부분 스킴의 족 이 주어졌을 때, 사상
아래 의 원상
을 정의할 수 있다. 즉, 는
만약 이 함자가 표현 가능 함자라면, 이를 표현하는 스킴을 이라고 한다. 즉, 표준적으로
이다.
물론, 로 놓아, 절대적 힐베르트 스킴을 정의할 수 있다. 이 경우
이다.
성질
존재
만약 가 국소 뇌터 스킴이며, 가 사영 스킴이라면, 가 존재한다.
특히, 정수 계수의 사영 공간
은 힐베르트 스킴을 갖는다.
반면, 힐베르트 스킴을 갖지 않는 대수다양체가 존재한다. 구체적으로, 히로나카 헤이스케는 사영 대수다양체가 아닌 어떤 복소수 비특이 완비 대수다양체 에 대하여, 대수 공간 가 스킴으로서 존재하지 않음을 보였으며, 이에 따라 모듈러스 공간 는 스킴이 아니다.
힐베르트 다항식으로의 분해
가 국소 뇌터 스킴이며, 가 계수의 사영 공간이라고 하자. 그렇다면, 그 -부분 스킴에 대하여 힐베르트 다항식을 정의할 수 있다. 이는 유리수 계수 다항식이다.
평탄 스킴 족의 올들은 같은 힐베르트 다항식을 갖는다. 따라서, 힐베르트 스킴은 각 힐베르트 다항식에 대한 성분들의 분리합집합이다.
즉, 각 유리수 계수 다항식 에 대하여, 는 힐베르트 다항식이 인 닫힌 부분 스킴의 모듈라이 공간이다.
사영 공간의 힐베르트 스킴의 구성
정수 계수 사영 공간 의 힐베르트 스킴 은 다음과 같이 구체적으로 구성된다.
다항식 의 고츠만 수(Gotzmann數, 영어: Gotzmann number)는 다음 조건을 만족시키는 최소의 자연수 이다.
- 의 임의의 포화 아이디얼 , 에 대하여, 만약 의 힐베르트 다항식이 라면, 는 차 이하의 생성원만으로부터 생성될 수 있다.
힐베르트 스킴 는 구체적으로 다음과 같이 표현될 수 있다.
여기서
예
임의의 국소 뇌터 스킴 에 대하여, 힐베르트 다항식이 상수 인 힐베르트 스킴 을 생각하자. 이는 위의 개의 점으로 구성된 아르틴 부분 스킴의 모듈라이 공간이며, 따라서 짜임새 공간 이다 (은 대칭군). 특히, 이다.
같이 보기
참고 문헌
- Nitsure, Nitin. “Construction of Hilbert and Quot schemes” (영어). arXiv:math/0504590.
- Habibi, S. (2009). 《Hilbert and Quot schemes》 (영어). 석사 학위 논문 (지도 교수: L. Barbieri Viale). Université de Bordeaux Ⅺ.
외부 링크
- “Hilbert scheme” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Hilbert scheme” (영어). 《nLab》.
- Siegel, Charles (2008년 7월 18일). “The Hilbert scheme” (영어).
- Maclagan, Diane (2007년 9월). “Notes on Hilbert schemes” (PDF) (영어).
- Bertram, Aaron (1999). “Construction of the Hilbert scheme” (영어).
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 대수기하학
- 미분기하학
- 모듈라이 이론
- 스킴 이론