국소화 (범주론)
범주론에서 국소화(局所化, 영어: localization)는 범주의 일부 사상들을 동형 사상으로 만드는 과정이다.
정의
작은 범주 및 그 속의 사상들의 집합 가 주어졌다고 하자. 또한, 가 모든 동형 사상을 포함하며, 또한 사상의 합성에 대하여 닫혀 있다고 하자.
그렇다면, 의 에서의 국소화 는 다음과 같은 보편 성질을 만족시키는 범주이다.
작은 범주의 국소화는 항상 존재하며, 보편 성질의 성질에 따라서 범주의 동치 아래 유일하다.
(만약 가 모든 동형 사상을 포함하지 않거나, 사상의 합성에 대하여 닫혀 있지 않을 경우에도 국소화를 정의할 수 있다. 그러나 이 경우 만약 를 위 성질에 대한 폐포라고 한다면, 는 와 같은 보편 성질을 만족시키게 되어 서로 동형이다. 즉, 일반성을 잃지 않고 가 위 성질들을 만족시킨다고 가정할 수 있다.)
집합론적 문제
작은 범주의 경우 국소화는 항상 존재한다. 작은 범주가 아닐 경우, 국소화는 일반적으로 존재하지 않을 수 있다. 특히, 국소적으로 작은 범주의 국소화는 (만약 존재한다면) 국소적으로 작은 범주가 아닐 수 있다.
만약 그로텐디크 전체를 사용한다면 물론 국소화는 항상 존재하지만, 이 경우 국소화는 사용되는 그로텐디크 전체에 의존할 수 있다.
만약 범주가 모형 범주의 구조를 갖는다면, 이 개념을 사용하여 약한 동치에서의 국소화를 구성할 수 있다.
구성
작은 범주 와, 동형 사상을 포함하며 합성에 대하여 닫혀 있는 사상 집합 가 주어졌다고 하자. 그렇다면, 알파벳 집합
의 원소가 사상 또는 각 에 대하여 형식적 기호 로 구성되었다고 하자. 에 대하여 다음을 정의하자.
위의 문자열
가 다음 두 성질을 만족시킨다면, 지그재그(영어: zigzag)라고 한다. (는 클레이니 스타이다.)
- 길이가 1 이상이다.
- 모든 에 대하여, 이다.
지그재그는 다음과 같은 꼴의 그림으로 생각할 수 있다.
(여기서 는 에 속한 사상을 뜻한다.) 즉, 순방향으로는 임의의 사상을 사용할 수 있지만, 역방향으로는 항상 의 원소만을 사용한다.
이 경우, 지그재그의 집합 위에 다음과 같은 관계로부터 생성되는 동치 관계를 부여하자.
- 임의의 문자열 에 대하여, (만약 및 가운데 하나가 양의 길이를 갖는다면)
- 임의의 문자열 및 에 대하여,
- 임의의 문자열 및 에 대하여,
- 임의의 문자열 및 에 대하여,
- 임의의 문자열 및 사상 , 및 , 이 주어졌고, 이며 일 때,
그렇다면, 국소화 는 다음과 같은 범주이다.
- 의 대상은 의 대상과 같다.
- 의 사상은 의 지그재그의 동치류이다.
- 지그재그 의 정의역은 의 정의역이며, 공역은 의 공역이다.
- 의 항등 사상은 지그재그 의 동치류이다.
오레 조건
환의 국소화를 오레 조건을 가정하면 더 간단하게 구성할 수 있는 것처럼, 마찬가지로 범주의 국소화의 경우에도 비슷한 오레 조건을 가정하여 국소화를 더 간단하게 구성할 수 있다.
범주 및 그 속의 사상 모임 가 다음 조건들을 만족시킨다면, 오른쪽 오레 조건이 성립한다고 한다. (여기서, 의 원소를 로 표기하였다.)
- 는 모든 동형 사상을 포함한다.
- 는 사상의 합성에 대하여 닫혀 있다.
- 임의의 그림 에 대하여, 다음과 같은 그림을 가환 그림으로 만드는 사상 이 존재한다.
- 임의의 에 대하여, 만약 라면, 가 되는 가 존재한다.
오른쪽 지붕(영어: right roof)은 다음과 같은 꼴의 그림이다.
같은 정의역과 공역을 갖는 두 오른쪽 지붕
에 대하여, 다음과 같은 가환 그림이 존재한다면, 두 오른쪽 지붕이 서로 동치라고 하자.
만약 가 오른쪽 오레 조건을 만족시킨다면, 지그재그의 동치류는 오른쪽 지붕의 동치류와 일대일 대응하며, 따라서 사상을 오른쪽 지붕으로 하는 국소화를 구성할 수 있다.
마찬가지로, 오른쪽 오레 조건을 쌍대화하여 왼쪽 오레 조건(영어: left Ore condition)을 정의할 수 있다. 이 경우, 사상을 왼쪽 지붕(영어: left roof)으로 하는 국소화를 구성할 수 있다.
모형 범주
모형 범주 가 주어졌다고 하자. 그 호모토피 범주 는 다음과 같다.
- 의 대상은 의 대상 가운데 올대상이자 쌍대올대상인 것이다.
- 의 사상은 의 호모토피류이다. (올대상이자 쌍대올대상인 두 대상 사이에는 왼쪽·오른쪽 호모토피류가 일치한다.)
그렇다면, 국소화 는 호모토피 범주 와 동치이다.
특히, 모형 범주의 호모토피 범주 구성은 가 작은 범주가 아니더라도 국소적으로 작은 범주라면 집합론적으로 문제가 없기 때문에, 이러한 경우에 국소화를 구성하는 데 사용된다.
성질
일반적으로, 국소화 함자 는 충실한 함자도, 충만한 함자도 아니다. 예를 들어, 사상 및 에 대하여, 만약 이지만 라면, 국소화 함자 아래 가 된다.
이는 에서 가 단사 사상이 아니더라도, 에서는 항상 동형 사상이므로 특히 단사 사상이 되기 때문이다.
예
아벨 범주의 유도 범주는 유사동형의 모임에 대한 국소화이다.
위상 공간의 호모토피 범주는 위상 공간의 범주를 호모토피 동치 또는 약한 호모토피 동치에서 국소화하여 얻는다. 이 범주는 작은 범주가 아니지만, 호모토피 범주는 모형 범주 이론을 통해 집합론적 문제를 피하면서 구성할 수 있다.
임의의 아벨 다양체 A에서 B로 가는 등원 사상(isogeny)은 유한 핵을 갖는 전사 함수이다. 아벨 다양체에 대한 몇몇 정리에서, 등원한 차이를 제외한 아벨 다양체(abelian variety up to isogeny )라는 개념이 필요할 때가 있다. 예를 들어 푸엥카레 기약성 정리(Poincaré's reducibility theorem)는 다음과 같다: 주어진 아벨 다양체 A의 아벨 부분 다양체 A1에 대하여
- A1 × A2
가 A와 등원한(isogenous) 부분 다양체 A2가 존재한다.
외부 링크
- “Localization in categories” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Localization” (영어). 《nLab》.
- “Calculus of fractions” (영어). 《nLab》.
- “Two-out-of-three” (영어). 《nLab》.
- “Two-out-of-six property” (영어). 《nLab》.
같이 보기
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 범주론
- 호모토피 이론