대각 사상
범주론에서 대각 사상(對角寫像, 영어: diagonal morphism)은 어떤 대상에서 그 거듭제곱으로 가는 표준적인 사상이다. 마찬가지로, 어떤 대상의 거듭쌍대곱에서 원래 대상으로 가는 쌍대 대각 사상(雙對對角寫像, 영어: codiagonal morphism)이 존재한다.
정의
기수 및 범주 속의 대상 와 가 주어졌다고 하자. 만약 개의 들의 곱 이 존재한다고 하자. 그렇다면, 곱의 보편 성질에 의하여 항등 사상 로부터 유도되는 사상
이 존재한다. 이를 대각 사상이라고 한다. 만약 일 경우 이는 항등 사상 이며, 만약 일 경우 이는 끝 대상 으로 가는 유일한 사상 이다.
마찬가지로, 만약 개의 들의 쌍대곱 이 존재한다고 하자. 그렇다면, 쌍대곱의 보편 성질에 의하여 항등 사상 로부터 유도되는 사상
이 존재한다. 이를 쌍대 대각 사상(영어: codiagonal morphism)이라고 한다. 만약 일 경우 이는 항등 사상 이며, 만약 일 경우 이는 시작 대상 에서 로 가는 유일한 사상 이다.
예
집합의 범주
집합과 함수의 범주 는 완비 범주이자 쌍대 완비 범주이다. 집합 과 기수 가 주어졌을 때, 곱집합 으로 가는 대각 함수는 다음과 같다.
대각 사상의 치역을 대각 부분 집합(영어: diagonal subset)이라고 한다.
이며, 가 유한 집합이며, 에 임의의 전순서를 주면 의 원소는 변의 길이가 인 정사각 행렬의 한 성분으로 생각할 수 있다. 이 경우, 대각 사상은 모든 원소를 정사각 행렬의 (왼쪽 위에서 오른쪽 아래로 가는) 대각선 위의 성분에 대응시키며, "대각 사상"이라는 이름은 이로부터 유래하였다.
작은 범주의 범주
작은 범주와 함자의 범주 는 완비 범주이자 쌍대 완비 범주이다. 이 경우, 작은 범주 위의 대각 함자
는 대상과 사상에 다음과 같이 작용한다.
조각 범주
범주 속의 대상 위의 조각 범주 를 생각하자. 조각 범주의 대상 의 대각 사상 은 (만약 존재한다면) 에서 다음과 같다.
즉, 이는 당김 에 대한 대각 사상 을 이룬다.
위상 공간의 범주
위상 공간의 범주 에서, 대각 사상 은 집합으로서의 대각 함수와 같으며, 대각 사상은 항상 그 상으로의 위상 동형을 정의한다.
위상 공간 에 대하여 다음 두 조건이 서로 동치이다.
스킴의 범주
스킴의 범주에서, 당김에 대한 대각 사상 는 다음과 같이 다양한 정의·정리들에 등장한다.
- 스킴 사상 에 대하여, 이에 대한 대각 사상 는 항상 스킴 몰입이다. 즉, 어떤 열린 몰입 및 닫힌 몰입 의 합성이다.
- 스킴 사상 에 대하여, 이에 대한 대각 사상 가 준콤팩트 함수라면 를 준분리 사상이라고 한다.
- 스킴 사상 에 대하여, 이에 대한 대각 사상 가 닫힌 몰입이라면 를 분리 사상이라고 한다.[1]:96 이는 대각 사상의 상이 닫힌집합인 것과 동치이다.[1]:96, Corollary II.4.2
- 국소 유한 표시 사상 에 대하여, 이에 대한 대각 사상 가 열린 몰입이라면 를 비분기 사상이라고 한다.[2]:65, Corollaire IV.17.4.2(c)
- 스킴 사상 에 대하여 다음 두 조건이 서로 동치이며, 이를 만족시키는 사상을 보편 단사 사상(영어: universally injective morphism)이라고 한다.
각주
- ↑ 가 나 Hartshorne, Robin (1977). 《Algebraic geometry》 (영어). Graduate Texts in Mathematics 52. Springer. doi:10.1007/978-1-4757-3849-0. ISBN 978-0-387-90244-9. ISSN 0072-5285. MR 0463157. Zbl 0367.14001.
- ↑ Grothendieck, Alexandre; Dieudonné, Jean (1967). “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie” (프랑스어). 《Publications Mathématiques de l’IHÉS》 32. doi:10.1007/bf02732123. ISSN 0073-8301. MR 0238860. 2016년 3월 3일에 원본 문서에서 보존된 문서. 2016년 2월 26일에 확인함.
외부 링크
- “Diagonal morphism” (영어). 《nLab》.
- “Codiagonal” (영어). 《nLab》.
- “Diagonal function” (영어). 《nLab》.
- “Diagonal functor” (영어). 《nLab》.
- “Diagonal subset” (영어). 《nLab》.
- “What's with the diagonal morphism?” (영어). StackExchange.
- “Hausdorff space iff diagonal set on product is closed” (영어). 《ProofWiki》.
- CS1 - 영어 인용 (en)
- CS1 - 프랑스어 인용 (fr)
- 영어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 함수와 사상
- 범주론