자이페르트 곡면
매듭 이론에서 자이페르트 곡면(Seifert曲面, 영어: Seifert surface)은 3차원 초구 속의 연결 2차원 유향 경계다양체이다. 그 경계는 연환을 정의하며, 모든 연환은 이러한 꼴로 표현될 수 있다. 어떤 주어진 연환의 자이페르트 곡면이란 이 연환을 경계로 삼은 자이페르트 곡면을 뜻한다.
정의
차분한(영어: tame) 유향 연환 의 자이페르트 곡면은 인 속의 2차원 유향 연결 경계다양체 이다.
성질
존재와 유일성
모든 연환은 자이페르트 곡면을 갖는다. 그러나 이는 유일하지 않다.
연환의 자이페르트 곡면은 구체적으로 다음과 같은 알고리즘으로 구성된다. 우선, 연환 이 개의 연결 성분을 갖는다고 하자. 의 임의의 그림(평면으로의 투영)이 주어졌다고 하자. 이 그림이 개의 교차점을 갖는다고 하자. 그렇다면,
와 같이, 그림에서 교차점들을 해소할 수 있다. 교차점을 모두 해소하면 연환의 그림은 서로 교차하지 않는 원들로 구성되는데, 개의 원들이 있다고 하자.
그렇다면, 다음과 같은 자이페르트 곡면을 구성할 수 있다.
- 연환면의 그림의 해소의 각 원 안에 원판을 붙인다. 즉, 개의 원판이 존재한다.
- 연환면에서, 해소된 각 교차점에 대응하는 띠를 이어붙인다. 이 경우, 아래 그림과 같이 띠를 뒤틀어 이어붙이며, 띠를 뒤트는 방향은 해소되기 이전의 교차점의 방향을 따른다.
이 경우, 교차점의 해소에서 방향을 보존해야 한다. (방향을 보존하지 않으면, 비가향 다양체를 얻을 수 있다.) 즉, 다음과 같은 꼴의 해소는 불가능하다.
종수
위 알고리즘으로 구성된 자이페르트 곡면은 개의 구멍을 가지며, 종수가
인 2차원 경계다양체이다. 물론, 어떤 연환 의 자이페르트 곡면 가 주어졌을 때, 임의의 원환면과의 연결합 역시 의 자이페르트 곡면이며, 그 종수는 원래 자이페르트 곡면의 종수 + 1이다. 주어진 연환의 자이페르트 곡면들의 최소 종수를 연환의 종수(種數, 영어: genus of a link/knot)라고 한다.
임의의 두 유향 매듭 , 에 대하여, 다음이 성립한다.
즉, 매듭의 연결합은 종수를 보존한다.
자이페르트 행렬
연환 의 자이페르트 곡면 가 주어졌다고 하고, 그 종수가 라고 하자. 그렇다면, 그 1차 호몰로지 군은 다음과 같은 자유 아벨 군이다.
이 경우, 그 교차 형식이
가 되게 하는 기저
가 존재한다.
이 기저에 대한 자이페르트 행렬(Seifert行列, 영어: Seifert matrix) 은 정수 성분의 정사각 행렬이며, 그 번째 성분은 와 의 연환수이다. 이 경우
가 성립한다. (은 수반 행렬이다.) 반대로, 의 꼴인 임의의 정수 성분의 짝수 크기 정사각 행렬은 어떤 매듭의 자이페르트 곡면의 자이페르트 행렬로 표현될 수 있다.
자이페르트 행렬의 다음과 같은 행렬식
은 연환의 알렉산더 다항식이라고 한다. 이는 자이페르트 곡면의 선택이나 그 호몰로지의 기저의 선택에 의존하지 않는, 유향 연환의 불변량이다. 이에 따라, 연환의 종수 은 다음과 같은 부등식을 따른다.
자이페르트 행렬의 대칭화
의 부호수 역시 연환의 불변량이며, 이를 연환의 부호수(符號數, 영어: signature of a link/knot)라고 한다.
예
자명한 원환
공집합은 0개의 연결 성분을 갖는 연환이다. 그 자이페르트 곡면은 경계를 갖지 않는 임의의 유향 곡면이며, 이 연환의 종수는 물론 0이다.
자명한 매듭의 경우, 원판이 그 원환면이므로 그 종수는 0이다. 보다 일반적으로, 개의 연결 성분을 갖는 자명한 연환의 자이페르트 곡면은 개의 구멍을 뚫은 구이며, 따라서 그 종수는 0이다. 종수가 0인 매듭은 자명한 매듭 밖에 없다. (그러나 종수가 0이지만 자명하지 않은 연환이 존재한다.)
원환면 매듭
-원환면 매듭의 종수는 이다. 예를 들어, (2,1)-원환면 매듭인 세잎매듭의 종수는 1이다. 세잎매듭의 그림
에서, 자이페르트 알고리즘을 가하면, 이므로 종수 을 얻는다. (이 경우, 해소된 그림은 밖의 큰 원과 속의 작은 원으로 구성된다. 세잎그림의 그림에서 방향을 무시하는 해소를 취하면, 이지만, 이 경우 얻게 되는 곡면은 세 번 뒤튼 뫼비우스 띠이므로 유향 다양체가 아니다.)
호프 연환
호프 연환의 한 자이페르트 곡면은 다음과 같다.
아이소토피를 무시하면, 이는 두 개의 구멍이 뚫린 구(즉, 두 개의 원판의 연결합와 미분 동형)이다. 따라서, 호프 연환의 종수는 0이다.
8자 매듭
8자 매듭(41번 매듭)의 종수는 1이다.
역사
헤르베르트 자이페르트가 1934년에 도입하였다.[1]
참고 문헌
- ↑ Seifert, Herbert (1934). “Über das Geschlecht von Knoten”. 《Mathematische Annalen》 110 (1): 571–592. doi:10.1007/BF01448044.
외부 링크
- Weisstein, Eric Wolfgang. “Seifert surface” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Seifert matrix” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Knot genus” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Seifert surface” (영어). 《nLab》.
- 스크립트 오류가 있는 문서
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 매듭 이론
- 곡면