초등각 장론
양자장론에서 초등각 장론(超等角場論, 영어: superconformal field theory, 약자 SCFT)은 등각 대칭과 초대칭을 동시에 갖는 양자장론이다.
4차원 초등각 장론
4차원 초등각 장론은 4차원 초등각 대칭을 따르는 양자장론이며, 4차원 초대칭 양자장론의 재규격화군흐름의 적외선 극한으로 얻어진다.
4차원 초등각 대수
4차원에서, 초전하의 수가 개인 초등각 대수는 이다.[1] 그 보손 성분은
이다. 다만, 일 경우 U(1) R대칭이 깨져,
가 된다.[1]
4차원 초등각 대수의 생성원 및 이들의 보손 대칭 표현은 다음과 같다.
| 생성원 | 기호 | R대칭 표현 | 로런츠 표현 | 에르미트 수반 | |
|---|---|---|---|---|---|
| 운동량 | +1 | 1 | (½,½) | ||
| 왼손 초전하 | +½ | (½,0) | |||
| 오른손 초전하 | +½ | (0,½) | |||
| 확대 | 0 | 1 | (0,0) | ||
| 각운동량 | 0 | 1 | (1,0) ⊕ (0,1) | ||
| R대칭 | 0 | (0,0) | |||
| 왼손 특수 초전하 | −½ | (½,0) | |||
| 오른손 특수 초전하 | −½ | (0,½) | |||
| 특수 등각 변환 | −1 | 1 | (½,½) |
, , , 사이의 리 괄호는 등각 대칭과 같으며. 나머지 리 괄호들은 다음과 같다.[2]
여기서
이다.
표현
4차원 초등각 장론에서의 1차 등각장은 R대칭 표현과 등각 무게 및 로런츠 표현에 의하여 결정된다. 유니터리 초등각 장론의 경우 이 값들에 대하여 유니터리 하한(영어: unitarity bound)이라는 부등식들이 존재한다.[3]
3차원 초등각 장론
3차원 초등각 대수는 이며, 그 보손 부분군은
2차원 초등각 장론
2차원 초등각 대수는 비라소로 대수를 포함하므로 무한 차원의 리 초대수이며, 이에 따라 2차원 초등각 장론들은 여러 특수한 성질들을 갖는다.
성질
4차원 초등각 장론의 R전하 및 등각 무게는 -최대화(영어: -maximization)라는 방법으로 계산할 수 있다.[5][6] 즉, 이들 값들은 항상 대수적 수이다.
예
초대칭 양-밀스 이론은 4차원 초등각 장론이며, 이는 D3-막의 세계부피 이론이다. 6차원 (2,0) 초등각 장론을 리만 곡면에 축소화하면, 𝒮류 이론(영어: theories of class 𝒮)이라는 초등각 장론들을 얻는다.[7] 4차원 초등각 장론에 대하여서는 자이베르그 이중성이라는 이중성이 존재한다.
3차원에서는 베스-추미노 모형이 재규격화군 흐름의 고정점을 만나, 초등각 장론을 이룬다.[8] 그러나 4차원에서는 베스-추미노 모형의 적외선 극한은 자유 이론이다.
6차원에서는 6차원 (2,0) 초등각 장론이 존재한다. 이는 M5-막의 세계부피 이론이다.
같이 보기
각주
- ↑ 가 나 Nahm, Werner (1978). “Supersymmetries and their representations” (PDF) (영어). 《Nuclear Physics B》 135: 149. 2018년 7월 26일에 원본 문서 (PDF)에서 보존된 문서. 2015년 6월 16일에 확인함.
- ↑ Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). 《Superspace, or one thousand and one lessons in supersymmetry》 (영어). Frontiers in Physics 58. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.
- ↑ Minwalla, Shiraz (1998). “Restrictions imposed by superconformal invariance on quantum field theories” (영어). 《Advances in Theoretical and Mathematical Physics》 2: 781-846. arXiv:hep-th/9712074.
- ↑ Park, Jeong-Hyuck (2000년 10월). “Superconformal symmetry in three dimensions” (영어). 《Journal of Mathematical Physics》 41 (10): 7129–7161. arXiv:hep-th/9910199. Bibcode:2000JMP....41.7129P. doi:10.1063/1.1290056.
- ↑ Intriligator, Kenneth; Wecht, Brian. “The exact superconformal R-symmetry maximizes ” (영어). arXiv:hep-th/0304128. doi:10.1016/S0550-3213(03)00459-0.
- ↑ Intriligator, Kenneth; Wecht, Brian. “Exploring the 4d Superconformal Zoo” (영어). arXiv:hep-th/0402084.
- ↑ Gaiotto, Davide; Gregory W. Moore, Andrew Neitzke (2013년 2월 15일). “Wall-crossing, Hitchin systems, and the WKB approximation” (영어). 《Advances in Mathematics》 234: 239–403. arXiv:0907.3987. Bibcode:2009arXiv0907.3987G. doi:10.1016/j.aim.2012.09.027. ISSN 0001-8708.
- ↑ West, Peter C. (1997). “Introduction to rigid supersymmetric theories”. arXiv:hep-th/9805055.
- Shnider, Steven (1988년 11월). “The superconformal algebra in higher dimensions” (영어). 《Letters in Mathematical Physics》 16 (4): 377–383. doi:10.1007/BF00402046.
외부 링크
- “SCFT” (영어). 《nLab》.
- Kaplunovsky, Vadim (2009). “Conformal and superconformal symmetries” (PDF) (영어). 2015년 3월 26일에 원본 문서 (PDF)에서 보존된 문서. 2015년 6월 16일에 확인함.
- CS1 - 영어 인용 (en)
- 인용 오류 - 오래된 변수를 사용함
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 등각 장론
- 초대칭