풍성한 범주
범주론에서 풍성한 범주(豐盛-範疇, 영어: enriched category)는 "사상 집합"이 집합 대신 다른 모노이드 범주의 대상이 될 수 있는, 범주의 개념의 일반화이다.
정의
가 주어졌다고 하자. 위의 풍성한 범주(영어: category enriched over ) 는 다음과 같은 데이터로 구성된다.
- 모임 . 이 모임의 원소를 의 대상(영어: object)이라고 한다.
- 임의의 에 대하여, .
- 임의의 에 대하여, -사상 . 이는 항등 사상을 나타낸다.
- 임의의 에 대하여, -사상 . 이는 사상의 합성을 나타낸다.
이 데이터는 다음 세 그림을 가환하게 만들어야만 한다.
- (사상 합성의 결합 법칙)
- (사상 합성의 왼쪽 항등원)
- (사상 합성의 오른쪽 항등원)
풍성한 함자
모노이드 범주 위의 두 풍성한 범주 , 사이의 -풍성한 함자(영어: -enriched functor) 는 다음과 같은 데이터로 구성된다.
- 각 대상 에 대하여, 대상
- 두 대상 에 대하여, 속의 사상
이 데이터는 다음 조건들을 만족시켜야 한다.
- (항등원의 보존) 임의의 대상 에 대하여 다음 그림이 가환한다.
- (사상 합성의 보존) 임의의 대상 에 대하여 다음 그림이 가환한다.
풍성한 자연 변환
모노이드 범주 위의 두 풍성한 범주 , 사이의 두 -풍성한 함자 사이의 -풍성한 자연 변환(영어: -enriched natural transformation) 은 다음과 같은 데이터로 구성된다.
- 각 대상 에 대하여, 속의 사상
이 데이터는 다음 조건을 만족시켜야 한다.
- (풍성한 함자 구조의 보존) 임의의 대상 에 대하여 다음 그림이 가환한다.
만약 이 국소적으로 작은 닫힌 대칭 모노이드 범주일 때, 은 스스로 -풍성한 범주를 이루며, 표현 가능 -풍성한 함자
가 존재한다. 이 경우, -풍성한 자연 변환 조건은 다음과 같이 쓸 수 있다.
- (풍성한 함자 구조의 보존) 임의의 대상 에 대하여 다음 그림이 가환한다.
모노이드 범주 이 주어졌을 때, 작은(=대상 모임이 집합인) -풍성한 범주, -풍성한 함자, -풍성한 자연 변환은 2-범주 를 이룬다.
연산
반대 범주
만약 이 대칭 모노이드 범주일 때, -풍성한 범주 의 반대 -풍성한 범주(영어: opposite -enriched category) 는 다음과 같다.
- 사상의 합성
- 항등 사상 는 단순히 이다.
텐서곱
만약 이 대칭 모노이드 범주일 때, -풍성한 범주 , 의 텐서곱(영어: tensor product) 는 다음과 같다.
- 사상의 합성
- 항등 사상 은
대칭 모노이드 범주 이 주어졌을 때, 는 풍성한 범주의 텐서곱에 대하여 대칭 모노이드 2-범주를 이룬다.
풍성함의 망각
국소적으로 작은 모노이드 범주 이 주어졌을 때, 작은 -풍성한 범주의 2-범주 와 작은 범주의 2-범주 사이에 표준적인 표현 가능 2-함자
가 존재한다.[1] 여기서 은 다음과 같다.
예
국소적으로 작은 범주는 집합의 범주 위의 풍성한 범주와 같다.
n-범주
작은 범주의 범주 위의 풍성한 범주를 2-범주(영어: 2-category)라고 한다. 보다 일반적으로, -범주의 범주 위의 풍성한 범주를 -범주(영어: -category)라고 한다.
선형 범주
가환환 위의 가군들의 범주 는 텐서곱에 대하여 모노이드 범주를 이룬다. 이 위의 풍성한 범주는 -선형 범주(-線型範疇, 영어: -linear category)라고 한다.
준가법 범주
특히, (정수환)인 경우, 는 아벨 군의 범주 와 같다. -풍성한 범주는 준가법 범주(準加法範疇, 영어: preadditive category)라고 하고, -풍성한 함자는 가법 함자(加法範疇, 영어: additive functor)라고 한다.
준가법 범주는 항상 영 대상을 가지며, 유한 곱과 유한 쌍대곱이 일치한다.
가법 범주(영어: additive category)는 유한 완비 준가법 범주이다. (준가법 범주에서 유한 곱과 유한 쌍대곱이 일치하므로, 유한 완비 범주인 것은 유한 쌍대 완비 범주인 것과 동치이다.)
같이 보기
참고 문헌
- ↑ Kelly, Gregory Maxwell (2005). “Basic concepts of enriched category theory” 1982년판 재판 (영어). 《Reprints in Theory and Applications of Categories》 (No. 10 (2005)): 1~136. MR 2177301. Zbl 1086.18001.
- Kelly, G. M. (1982). 《Basic Concepts of Enriched Category Theory》 (PDF) (영어). London Mathematical Society Lecture Note Series 64. Cambridge University Press.
외부 링크
- “Category” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Higher-dimensional category” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Enriched category theory” (영어). 《nLab》.
- “Enriched category” (영어). 《nLab》.
- “Enriched functor” (영어). 《nLab》.
- “Strict n-category” (영어). 《nLab》.
- “Linear category” (영어). 《nLab》.
- “Linear functor” (영어). 《nLab》.
- “Preadditive category” (영어). 《nLab》.
- “Additive functor” (영어). 《nLab》.
- “Additive category” (영어). 《nLab》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- CS1 - 영어 인용 (en)
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 범주론