피복 공간
위상수학에서 피복 공간(被覆空間, 영어: covering space) 또는 덮개 공간은 어떤 공간을, 여러 겹의 "피복"을 이루며 둘러싸는 위상 공간이다.
정의
피복 공간은 올이 이산 공간인 올다발이다. 구체적으로, 위상 공간 의 피복 공간 는 다음과 같은 데이터로 구성된다.[1]:336
이 데이터가 피복 공간을 이루려면, 임의의 에 대하여, 다음 조건을 만족시키는 열린 근방 가 존재하여야 한다.
이 경우, 를 피복 함수(被覆函數, 영어: covering function)라고 하며, 를 피복의 올(영어: fiber)이라고 한다. 위 조건을 만족시키는 근방을 피복 근방(被覆近傍, 영어: covering neighborhood)이라고 한다.
올이 인 피복 공간을 겹 피복 공간(영어: -fold covering space)이라고 한다. 여기서 는 집합의 크기를 뜻한다.
만약 가 단일 연결 공간이라면, 를 범피복 공간(凡被覆空間, 영어: universal covering space)이라 한다.
피복 공간의 사상(영어: morphism)은 올다발 사상과 같다. 즉, 위의 두 피복 공간 및 사이의 사상은 다음 그림을 가환하게 만드는 연속 함수 이다.
이에 따라, 주어진 위상 공간 위의 피복 공간들은 범주 를 이룬다. 피복 공간의 자기 동형은 피복 변환(被覆變換, 영어: deck transformation)이라고 한다. 이들이 이루는 군은 피복 변환군(被覆變換群, 영어: deck transformation group)이라고 한다.
성질
피복 공간 의 사영 함수 는 항상 열린 함수이다.
다양체의 가산 피복 공간은 역시 피복 공간이다. 리 군의 범피복 공간은 리 군을 이루며, 이를 범피복군(凡被覆群, 영어: universal covering group)이라고 한다.
분류
연결 공간의 경우
점을 가진 공간 가 주어졌다고 하자. 그렇다면, 다음과 같은 함자가 존재한다.
여기서 는 의 피복 공간들의 범주이며, 는 기본군 의 작용을 갖춘 집합의 범주이다. 이 함자는 구체적으로 다음과 같다.
기본군 의 위의 작용은 호모토피 올림 성질에 의하여 주어진다.
또한, 만약 가 연결 국소 경로 연결 반국소 단일 연결 공간이라면 이는 범주의 동치를 이룬다.
연결 공간이 아닌 경우
연결 공간이 아닐 수 있는 경우, 범주의 동치를 얻으려면 기본군 대신 기본 준군을 사용하여야 한다.
두 준군 , 사이의 피복 사상 을, 다음과 같은 호모토피 올림 성질(영어: homotopy lifting property)을 만족시키는 준군 사상으로 정의하자.
- 임의의 의 대상 및 의 사상 에 대하여, 이며 인 대상 및 사상 가 유일하게 존재한다.
가 국소 경로 연결 반국소 단일 연결 공간이라고 하자. 그렇다면, 다음과 같은 범주의 동치가 존재한다.[2]:388, 10.6.1
여기서
- 는 의 기본 준군이다.
- 는 위의 준군 피복 사상들의 범주이다.
특히, 다음이 성립한다.
역사
피복 공간의 개념은 베른하르트 리만이 복소함수의 모노드로미를 리만 곡면으로 다루면서 발생하였다.[3]:294 이에 대하여 장 디외도네는 다음과 같이 적었다.
| “ | 리만 이전에는 그 누구도 "평면의 같은 부분을 여러 번 덮는 여러 장들"로 구성된 곡면을 고려하지 않았던 것처럼 보인다. 리만이 이를 복소수 변수의 해석 함수에 응용한 것을 보면, 리만은 현대적인 용어로는 구 S2 속의 열린집합 X의 분지 피복을 생각한 것으로 보인다. […] There is no indication that anybody before Riemann had thought of a surface consisting of “many sheets, superimposed on another, and covering many times the same part of the plane.” The applications of this concept made by Riemann to the theory of analytic functions of a complex variable show that he had in mind the modern concept of a “ramified covering space of an open subset X of the sphere S2: […] |
” |
— [3]:294
|
이후 앙리 푸앵카레는 1883년에 리만 곡면의 범피복 공간에 대하여 서술하였다.[3]:295
1932년에 헤르베르트 자이페르트는 올다발의 개념을 공리적으로 정의하면서, 이에 대한 특수한 경우로 "피복 공간"(독일어: Überlagerungsraum)의 개념을 정의하였다.[4]:194, §9 여기서 자이페르트는 피복 변환을 독일어: Deckbewegung 데크베베궁[*] 또는 독일어: Decktransformation 데크트란스포르마치온[*]이라고 표현하였다.[4]:236, Anhang 4 이는 독일어: Decke 데케[*] (피복) + 독일어: Bewegung 베베궁[*] (운동) 또는 독일어: Transformation 트란스포르마치온[*] (변환)에서 유래하였다. 이후 이를 영어로 번역하는 과정에서, 독일어 용어가 영어: deck transformation으로 오역되게 되었다.
각주
- ↑ Munkres, James R. (2000). 《Topology》 2판 (영어). Prentice Hall. ISBN 978-0-13-181629-9. MR 0464128. Zbl 0951.54001.
- ↑ Brown, Ronnie. 《Topology and Groupoids》 (영어).
- ↑ 가 나 다 Dieudonné, Jean. 《A History of Algebraic and Differential Topology, 1900 - 1960》 (영어).
- ↑ 가 나 Seifert, H. (1932). “Topologie dreidimensionaler gefaserter Räume” (PDF) (독일어). 《Acta Mathematica》 60 (1): 147–238. doi:10.1007/BF02398271. ISSN 0001-5962.
외부 링크
- “Covering” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Covering space” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Deck transformation” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Covering space” (영어). 《nLab》.
- “Universal covering space” (영어). 《nLab》.
- “Etymology of the name “deck transformation”” (영어). StackExchange.
- “Covering spaces and the fundamental groupoid” (영어). StackExchange.
같이 보기
- CS1 - 영어 인용 (en)
- CS1 - 독일어 인용 (de)
- 영어 표기를 포함한 문서
- 독일어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 대수적 위상수학
- 호모토피 이론
- 올다발
- 위상 그래프 이론