하이젠베르크 군
리 군론에서 하이젠베르크 군(Heisenberg群, 영어: Heisenberg group)은 멱영 리 군의 하나이다. 양자역학에서 쓰인다.
정의
다음이 주어졌다고 하자.
- 표수가 2가 아닌 체
- 위의 심플렉틱 벡터 공간
그렇다면, -벡터 공간
위에 다음과 같은 군 연산을 주자.
이는 군의 공리들을 만족시킴을 보일 수 있으며, 그 항등원은
이며, 그 역원은
이다. 이 군을 V에 대한 하이젠베르크 군 라고 한다.
보통 가 명시되어 있지 않은 경우, 인 경우에 해당한다. 즉, 를 의미한다.
리 대수
표수가 2가 아닌 체 위의 심플렉틱 벡터 공간 이 주어졌다고 하자. 그렇다면, 벡터 공간 위에 다음과 같은 리 대수 구조를 줄 수 있다.
이를 하이젠베르크 리 대수(영어: Heisenberg Lie algebra) 라고 한다.
가 유한 차원일 때, 심플렉틱 기저 를 잡을 수 있다. 위에서, 하이젠베르크 리 대수의 리 괄호는 다음과 같은 꼴이다.
여기서 는 크로네커 델타이다.
성질
하이젠베르크 군 는 아벨 군 의 중심 확대이다. 즉, 다음과 같은 군들의 짧은 완전열이 존재한다.
마찬가지로, 다음과 같은 리 대수의 짧은 완전열이 존재한다.
여기서 와 는 아벨 리 대수이다.
표수 0의 체 위에서, 유한 차원 하이젠베르크 군은 멱영군이며, 하이젠베르크 리 대수는 멱영 리 대수이다.
위상수학적 성질
만약 일 경우, 그 위의 유한 차원 하이젠베르크 군은 리 군을 이룬다. 이는 연결 단일 연결 멱영 리 군이며, (정의에 따라) 유클리드 공간과 미분 동형이다.
행렬 표현
표수 0의 체 위의 내적 공간 가 주어졌다고 하자. 그렇다면,
위에 다음과 같은, 표준적인 심플렉틱 벡터 공간 구조가 존재한다.
그렇다면, 다음과 같은 군 준동형이 존재한다.
지수 사상
하이젠베르크 군 의 리 대수 는 다음과 같은 꼴의 행렬들로 구성된다.
이 경우, 리 지수 사상은 다음과 같다.
표현론
하이젠베르크 군의 군 표현론은 스톤-폰 노이만 정리에 따라 주어진다. 이 정리에 따라, 하이젠베르크 군 의 비자명 유니터리 기약 표현은 (몇 가지의 기술적인 조건을 충족시킨다면) 르베그 공간 위의 다음과 같은 표현 와 동형이다.
이를 리 대수 에 대하여 표기하면 다음과 같다.
같이 보기
참고 문헌
- Binz, Ernst; Pods, Sonja (2008). 《The geometry of Heisenberg groups with applications in signal theory, optics, quantization, and field quantization》 (영어). Mathematical Surveys and Monographs 151. American Mathematical Society. ISBN 978-0-8218-4495-3. Zbl 1155.22001.
- Thangavelu, Sundaram (1998). 《Harmonic analysis on the Heisenberg group》 (영어). Progress in Mathematics 159. Birkhäuser. doi:10.1007/978-1-4612-1772-5. ISBN 978-1-4612-7275-5. Zbl 0892.43001.
- Howe, Roger Evans (1980). “On the role of the Heisenberg group in harmonic analysis” (영어). 《Bulletin of the American Mathematical Society》 3 (2): 821. doi:10.1090/S0273-0979-1980-14825-9. ISSN 0273-0979. MR 578375. Zbl 0442.43002.
- Semmes, Stephen (2003년 6월). “An introduction to Heisenberg groups in analysis and geometry” (PDF) (영어). 《Notices of the American Mathematical Society》 50 (6): 640–646. Zbl 1050.22012.
외부 링크
- Weisstein, Eric Wolfgang. “Heisenberg group” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Jefferies, B.R.F. (2001). “Weyl calculus” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. ISBN 978-1-55608-010-4.
- “Heisenberg group” (영어). 《nLab》.
- 이철희. “하이젠베르크 군과 대수”. 《수학노트》.
- Chafaï, Djalil (2011년 10월 8일). “Aspects of the Heisenberg group” (영어). 《Libres pensées d’un mathématicien ordinaire》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 리 군
- 양자역학
- 베르너 하이젠베르크
- 수리물리학