4차원 정다포체
4차원 정다포체란 정다면체를 4차원으로 확장한 것이다.
볼록 4차원 정다포체
| 이름 | 슐레플리 기호 |
점 | 모서리 | 면 | 포 | χ |
|---|---|---|---|---|---|---|
| 정오포체 | {3, 3, 3} | 5 | 10 | 10 | 5 | 0 |
| 정십육포체 | {3, 3, 4} | 8 | 24 | 32 | 16 | 0 |
| 정팔포체 | {4, 3, 3} | 16 | 32 | 24 | 8 | 0 |
| 정이십사포체 | {3, 4, 3} | 24 | 96 | 96 | 24 | 0 |
| 정백이십포체 | {5, 3, 3} | 600 | 1200 | 720 | 120 | 0 |
| 정육백포체 | {3, 3, 5} | 120 | 720 | 1200 | 600 | 0 |
4차원의 볼록 정다포체는 오직 6개밖에 없다. 이는 3차원의 정다면체가 5개뿐인 이유와 같으며, 정다면체가 5개뿐임을 증명할 때 정다각형들의 내각을 계산해 보듯 각 정다면체의 이면각을 따져 보면 알 수 있다.
정다포체는 정다면체보다 한 개가 많다. 그래서 정다포체를 정다면체와 대응시켜 보면 하나가 남는다는 것을 알 수 있다. 실제로, 각 초입체들과 입체들은 비슷한 것들끼리 쉽게 짝지을 수 있다. 대응시켜 보면, 정오포체는 정사면체에 대응되고, 정팔포체는 정육면체에, 정십육포체는 정팔면체에, 정백이십포체는 정십이면체에, 정육백포체는 정이십면체에 대응된다. 그리고 남는 정다포체는 정이십사포체인데, 이 입체는 3차원에도 비슷한 입체가 없고 5차원에서는 정규 테셀레아션이 되는데, 그 이후로는 다시 사라지는, 오직 4차원에만 존재하는 입체라서 '4차원의 고유한 정다포체'라고 할 수 있다(사실 이것은 연꼴이십사면체와 닮았지만, 이는 정다면체가 아니며, 5차원과 6차원에서는 초입체 테셀레이션이 된다). 참고로 정육면체 4개가 한 모서리에 모이면 허니컴이 된다 (슐레플리 기호는 {4, 3, 4}이다). 마찬가지로 정팔포체 벌집이나 정십육포체 벌집, 정이십사포체 벌집의 슐레플리 기호는 각각 {4, 3, 3, 4}, {3, 3, 4, 3}, {3, 4, 3, 3}인데, 정팔포체 벌집은 역시나 정육면체 벌집이나 정사각형 타일링 즉, 초입방체 벌집이므로 자기쌍대이고, 정십육포체로 만든 것은 정이십사포체 로 만든 것이다. 정팔포체는 이포각이 90°이므로 4개가 모여야 하고, 정이십사포체와 정십육포체는 120°이므로 3개가 모여야 4차원 공간을 채워 초입체 테셀레이션 (4차원에서의 벌집) 이 된다. 두 가지 이상의 정다면체로는 정사면체와 정팔면체를 조합하여 정사면체-정팔면체 벌집을 만들 수 있다. 이것의 쌍대는 마름모십이면체 3개를 한 모서리에 이어붙어서 만들 수 있는 마름모십이면체 벌집이다. 이들도 정다면체미 정다각형 타일링과 마찬가지로 깎으면 맨 끝에 차원의 수-2의 슐레플리 기호를 가진 정다면체나 정다포체가 나온다. 예를 들어 정육면체를 깎으면 단면이 정삼각형이 되고, 정이십면체를 깎으면 정오각형이 댠면으로 나온다는 것을 이용해 단면이 정사면체인 것은 각각 정오포체, 정팔포체, 정백이십포체이고 깎은 단면이 정팔면체인 것은 각각 정십육포체와 정육면체 벌집이고, 단면이 정이십면체인 것은 정육백포체이다. 또, 정육면체가 깎인 단면이 되는 것은 정이십사포체 뿐이며, 단면이 정십이면체인 것은 없다.
오목 4차원 정다포체
슐레플리-헤스 다포체란 케플러-푸앵소 다면체의 4차원 확장개념이다. 총 10가지가 있는데, 개수가 많아지기 때문에 다포체를 이루는 꼭짓점, 모서리, 면, 셀의 개수 또는 모양에 따라 분류하는 것도 조금 어렵기는 하다. 슐레플리 기호는 각각 {5/2, 5, 3}, {5/2, 3, 5}, {5/2, 3, 3}, {5/2, 5, 5/2}, {3, 5, 5/2}, {5, 3, 5/2}, {3, 3, 5/2}, {5, 5/2, 5}, {3, 5/2, 5}, {5, 5/2, 3}이다. 이들 중에서 자기 쌍대인 2개와 쌍대쌍이 별모양이 아닌 2개를 제외하면 모두 케플러-푸앵소 다면체를 확장하여 생긴다. 별모양 정다포체와 그의 자기쌍대가 아닌 쌍대의 경우 작은 별모양 백이십포체와 정이십면체 백이십포체, 큰 별모양 백이십포체와 거대 백이십포체의 경우 {5/2, 5}와 {5, 5/2}에 대응되고, 큰 거대 별모양 백이십포체와 거대 육백포체의 경우 {5/2, 3}와 {3, 5/2}에 대응된다.
| 정다포체의 종류 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 종류 | An | BCn | Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
| 정다각형 | 정삼각형 | 정사각형 | 정육각형 | 정오각형 | ||||||||
| 정다면체 | 정사면체 | 정팔면체 • 정육면체 | 데미큐브 | 정십이면체 • 정이십면체 | ||||||||
| 4차원 다포체 | 정오포체 | 정십육포체 • 정팔포체 (테서랙트) | 데미테서랙트 | 정이십사포체 | 정백이십포체 • 정육백포체 | |||||||
| 5차원 다포체 | 5-단체 | 5-교차다포체 • 5-초입방체 | 5-데미큐브 | |||||||||
| 6차원 다포체 | 6-단체 | 6-교차다포체 • 6-초입방체 | 6-데미큐브 | 122 • 221 | ||||||||
| 7차원 다포체 | 7-단체 | 7-교차다포체 • 7-초입방체 | 7-데미큐브 | 132 • 231 • 321 | ||||||||
| 8차원 다포체 | 8-단체 | 8-교차다포체 • 8-초입방체 | 8-데미큐브 | 142 • 241 • 421 | ||||||||
| 9차원 다포체 | 9-단체 | 9-교차다포체 • 9-초입방체 | 9-데미큐브 | |||||||||
| 10차원 다포체 | 10-단체 | 10-교차다포체 • 10-초입방체 | 10-데미큐브 | |||||||||
| 11차원 다포체 | 11-단체 | 11-교차다포체 • 11-초입방체 | 11-데미큐브 | |||||||||
| 12차원 다포체 | 12-단체 | 12-교차다포체 • 12-초입방체 | 12-데미큐브 | |||||||||
| n차원 다포체 | n-단체 | n-교차다포체 • n-초입방체 | n-데미큐브 | 1k2 • 2k1 • k21 | n-오각다포체 | |||||||
| 다포체의 종류 • 정다포체 • 정다포체의 목록 | ||||||||||||
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 4차원 다포체