등급 대수
| 대수 구조 |
|---|
| 파일:Algebraic structures.png |
환론에서 등급 대수(等級代數, 영어: graded algebra)는 그 원소들이 어떤 등급(等級, 영어: grade)을 가진 결합 대수이다.
정의
다음과 같은 데이터가 주어졌다고 하자.
이 구조가 다음 두 조건을 만족시킨다고 하자.
이 경우, 를 등급을 가진 등급 대수라고 한다. (정수환) 위의 단위 결합 대수는 환이므로, 위의 등급 대수는 등급환(等級環, 영어: graded ring)이라고 한다.
통상적으로, 등급의 종류가 주어지지 않았을 경우 (음이 아닌 정수들의 덧셈에 대한 모노이드)라고 놓는다. 등급이 (2차 순환군)인 경우, 등급 대수를 초대수(超代數, 영어: superalgebra)라고 부르기도 한다.
동급 원소
등급 대수 의 원소 는 다음과 같이 두 종류로 나뉜다.
- 만약 인 이 존재할 경우 를 동급 원소(同級, 영어: homogeneous element)라고 한다. 만약 이라면 이는 유일하며, 을 의 등급이라고 한다. 이는 보통 로 표현한다. (0은 동급 원소이지만, 그 등급은 유일하게 정의될 수 없다.)
- 만약 인 이 존재하지 않을 경우 를 비동급 원소(영어: inhomogeneous element)라고 한다. 예를 들어, 서로 다른 등급의 두 동급 원소들의 합은 비동급 원소다.
준동형
가환환 위의, 모노이드 등급의 두 등급 대수 , 사이의 등급 대수 준동형(영어: graded-algebra homomorphism) 은 다음과 같은 조건을 만족시키는 결합 대수 준동형이다.
즉, 등급을 보존하는 결합 대수 준동형이다. 이에 따라, 위의 등급 대수들과 등급 대수 준동형들은 범주 (대수 구조 다양체)
를 이룬다.
보다 일반적으로, 두 모노이드 사이의 모노이드 준동형 및 위의 등급 대수 와 등급 대수 가 주어졌을 때, 위의 등급 대수 준동형 은 다음 조건을 만족시키는 결합 대수 준동형이다.
성질
가환 모노이드 가 추가로 가환 반환의 구조 를 가진다고 하자. 또한, 다음과 같은 모노이드 준동형이 존재한다고 하자.
만약 -등급 -대수 가 다음 조건을 만족시킨다면, 가 등급 가환 대수(영어: graded-commutative algebra)라고 한다.
물론, 만약 의 표수가 2 또는 1이라면 (즉, 이라면) 등급 가환 등급 대수의 개념은 가환 등급 대수의 개념과 일치한다.
연산
직합
가환환 와 모노이드 , 이 주어졌을 때, -등급 -대수 및 -등급 -대수 의 직합(영어: direct sum) 은 다음과 같은 -등급 -대수이다.
텐서곱
가환환 와 가환 모노이드 이 주어졌을 때, -등급 -대수 , 의 텐서곱(영어: tensor product) 은 다음과 같은 -등급 -대수이다.
보다 일반적으로, 이 가환 모노이드이며, 그 위에 추가로 가환 반환의 구조가 주어졌다고 하자. 즉, 이 경우 -등급 -대수 에 대하여
이 된다. 또한, 모노이드 준동형
이 주어졌다고 하자. 그렇다면 두 -등급 -대수 , 에 대하여 등급 텐서곱(영어: graded tensor product) 은 다음과 같은 -등급 -대수이다.
이는 흔히 또는 또는 이며,
인 경우 사용된다.
두 등급 가환 -등급 -대수 , 이 주어졌을 때, 등급 텐서곱 역시 등급 가환 대수를 이룬다. 그러나 텐서곱 는 일반적으로 등급 가환 대수가 아니다.
등급의 망각
모노이드 등급을 갖는, 가환환 위의 등급 대수 가 주어졌으며, 모노이드 준동형
가 주어졌다고 하자. 그렇다면, 에서 등급 구조를 망각하여
를 정의할 수 있으며,
은 -등급 대수를 이룬다. 이는 등급 대수의 범주 사이의 함자
를 이룬다.
예를 들어, 자연수 등급의 대수 는 를 통해 등급을 망각하여 초대수 로 만들 수 있다.
무관 아이디얼
가환환 위의, 자연수 등급의 등급 대수 가 주어졌다고 하자. 그렇다면,
은 의 양쪽 아이디얼을 이룬다. 이 양쪽 아이디얼을 무관 아이디얼(無關ideal, 영어: irrelevant ideal)이라고 한다. 또한, 이에 대한 몫대수는 다음과 같다.
예
- 위상 공간 위의 코호몰로지 환 은 코호몰로지류의 차수에 대하여 자연수 등급을 가진 등급환이다.
- 매끄러운 다양체 위의 미분 형식의 공간 은 차수에 대하여 자연수 등급을 가진 -등급 대수이다.
- 모노이드 에 대한 모노이드 환은 등급을 가진 등급환이다.
- 클리퍼드 대수는 등급을 가진 등급 대수이다.
- 가환환 위의 가군 위의 텐서 대수 는 -등급 -대수이며, 이 경우 이다.
- 가환환 위의 가군 위의 외대수 는 -등급 -대수이다.
- 가환환 위의 가군 위의 대칭 대수 는 -등급 -대수이다. 특히, 가환환 위의 다항식환 은 -등급 -대수를 이룬다. 이 경우, 등급 대수를 이루는 각 들은 (0을 포함한) 차 동차다항식들의 집합과 같다.
같이 보기
외부 링크
- Weisstein, Eric Wolfgang. “Graded algebra” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Graded ring” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Graded algebra” (영어). 《nLab》.
- Yuan, Qiaochu (2009년 7월 10일). “Some examples of graded algebras” (영어). 《Annoying Precision》.
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 환론
- 대수