아벨 확대
체론에서 아벨 확대(Abel擴大, 영어: Abelian extension)는 그 갈루아 군이 아벨 군이 되는 갈루아 확대이다.
정의
아벨 확대는 갈루아 군이 아벨 군인 갈루아 확대이다. 순환 확대(영어: cyclic extension)는 갈루아 군이 순환군인 갈루아 확대이다.
분류
특정 경우, 주어진 체 위의 모든 순환 확대 및 아벨 확대를 분류할 수 있다.
- 쿠머 이론(Kummer理論, 영어: Kummer theory)은 1의 거듭제곱근이 충분히 존재하는 체 위의 아벨 확대들을 분류한다. 이에 따르면, 이러한 체 위의 모든 아벨 확대는 거듭제곱근들을 첨가하여 얻을 수 있다.
- 쿠머 이론은 확대의 차수가 체의 표수와 겹치는 경우 사용될 수 없다. 이 경우 아르틴-슈라이어 이론(영어: Artin–Schreier theory)은 차수가 표수와 같은 경우의 순환 확대를 분류하며, 이를 일반화한 아르틴-슈라이어-비트 이론(영어: Artin–Schreier–Wit theory)은 차수가 표수의 거듭제곱인 순환 확대를 분류한다. 이를 통해 차수가 표수의 거듭제곱인 모든 유한 아벨 확대를 분류할 수 있다. 이에 따르면, 이러한 경우 모든 아벨 확대는 비트 벡터를 사용하여 구성되는 특정 다항식의 근들을 첨가하여 얻을 수 있다.
- 만약 1의 거듭제곱근이 충분히 존재하지 않지만, 체가 대역체 또는 국소체인 경우, 유체론을 사용하여 모든 아벨 확대를 분류할 수 있다.
유한 생성 아벨 군의 구조론에 따라, 모든 유한 아벨 군은 크기가 소수의 거듭제곱인 순환군들의 직접곱으로 나타낼 수 있다. 따라서, 유한 아벨 확대를 분류하려면 소수 거듭제곱 크기의 순환 확대들을 분류하는 것으로 족하다.
쿠머 이론
쿠머 이론에 따르면, 1의 원시 제곱근(즉, 이 모두 서로 다른, 인 원소 )을 갖는 체 () 위의 확대 에 대하여 다음 조건들이 서로 동치이다.[1]:Theorem 1.1
- 차 순환 확대 이다.
- 가 되는 가 존재한다.
- 다음과 같은 가환 그림의 텐서곱 이 성립하는 원소 가 존재한다.
- 다음 가환 그림이 올곱이 되게 하는 -스킴 사상 이 존재한다.
여기서
- 은 위의 곱셈 군 스킴이다.
이에 따라, 위의 차 순환 확대는 -스킴 사상 에 의하여 주어진다.
보다 일반적으로, 이 가역원인 체 에 대하여, 다음과 같은 -군 스킴의 짧은 완전열이 존재하며, 이를 쿠머 완전열(영어: Kummer exact sequence)이라고 한다.
여기서
아르틴-슈라이어 이론
양의 표수 의 체 에서는 이므로, 1의 제곱근이 중복되며, 따라서 차수가 의 거듭제곱인 순환 확대에 대해서는 쿠머 이론을 적용시킬 수 없다. 이 경우 대신 아르틴-슈라이어(-쿠머) 이론을 적용시킬 수 있다.
아르틴-슈라이어 이론에 따르면, 양의 표수 의 체 위의 확대 에 대하여 다음 조건들이 서로 동치이다.
- 차 순환 확대 이다.
- 이 의 분해체가 되는 가 존재한다.
- 다음과 같은 가환 그림의 텐서곱 이 성립하는 원소 가 존재한다.
- 다음 가환 그림이 올곱이 되게 하는 -스킴 사상 이 존재한다.
여기서
표수가 인 체 위에서 다음과 같은 군 스킴의 짧은 완전열이 존재하며, 이를 아르틴-슈라이어 완전열(영어: Artin–Schreier exact sequence)이라고 한다.
여기서
아르틴-슈라이어-비트 이론
아르틴-슈라이어-비트 이론은 차 순환 확대에 적용되는 아르틴-슈라이어 이론을 차에 대하여 일반화한 것이다.
아르틴-슈라이어-비트 이론에 따르면, 표수 의 체 의 확대 에 대하여 다음 조건들이 서로 동치이다.[2]:§7[1]:Theorem 1.2
- 확대 가 차 순환 확대이다.
- 인 비트 벡터 가 존재한다. 여기서 는 이며, 여기서 는 비트 벡터의 뺄셈이다 (성분별 뺄셈과 다르다). 는 비트 벡터의 연산으로 정의되는 개의 다항식 들의 분해체를 뜻한다.
- 다음과 같은 가환 그림의 텐서곱 이 성립하는 원소 가 존재한다. (여기서 는 비트 벡터의 성분으로 간주한 형식적 변수들이며, 에서 는 비트 벡터로서의 뺄셈이며, 는 프로베니우스 사상이다.)
- 다음 가환 그림이 올곱이 되게 하는 -스킴 사상 이 존재한다.
여기서
- 는 길이 의 진 비트 벡터의 군이다. 스킴으로서 이는 차원 아핀 공간 이며, 그 위의 군 스킴의 구조는 위의 비트 벡터 연산으로부터 유도된다. 특히, 일 경우 가 된다.
- 는 프로베니우스 사상과 항등 사상의 차이다. 이는 다항식환 의 자기 사상 으로부터 정의된다.
다음과 같은 짧은 완전열이 존재하며, 이를 아르틴-슈라이어-비트 완전열(영어: Artin–Schreier–Witt exact sequence)이라고 한다. 이는 아르틴-슈라이어 완전열의 일반화이다.
여기서
유체론
쿠머 이론은 1의 거듭제곱근을 충분히 가지는 체에 대해서만 적용된다. 만약 1의 거듭제곱근이 충분히 존재하지 않지만, 체가 대역체 또는 국소체인 경우, 그 아벨 확대들은 유체론을 통해 분류된다.
예
대표적인 예로, 원분체는 유리수체의 순환 확대이자 아벨 확대이다. 일반적으로, 소수 차수의 갈루아 확대는 (소수 크기의 군은 순환군 밖에 없으므로) 순환 확대이다.
역사
쿠머 이론은 에른스트 쿠머가 1840년대에 페르마의 마지막 정리를 연구하기 위하여 도입하였다.
이후 에밀 아르틴과 오토 슈라이어가 1927년에 아르틴-슈라이어 이론을 도입하였다.[3] 에른스트 비트가 1936년에 비트 벡터의 개념을 도입하여 아르틴-슈라이어 이론을 아르틴-슈라이어-비트 이론으로 일반화하였다.[4]
각주
- ↑ 가 나 関口 力 (2001년 4월). 〈On the unification of Kummer and Artin–Schreier–Witt theories〉 (영어). 伊原 康隆 (편집). 《代数的整数論とその周辺》 (PDF). 数理解析研究所講究録 1200. 교토 대학. 1–12쪽.
- ↑ Hazewinkel, Michiel (2009). 〈Witt vectors. Part 1〉 (영어). Hazewinkel, Michiel (편집). 《Handbook of algebra. Volume 6》. Elsevier. 319–472쪽. arXiv:0804.3888. Bibcode:2008arXiv0804.3888H. doi:10.1016/S1570-7954(08)00207-6. ISBN 978-0-444-53257-2. MR 2553661.
- ↑ Artin, Emil; Schreier, Otto (1927). “Eine Kennzeichnung der reell abgeschlossenen Körper” (독일어). 《Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg》 5 (1): 225–231. doi:10.1007/BF02952522. ISSN 0025-5858.
- ↑ Witt, Ernst (1936). “Zyklische Körper und Algebren der Characteristik p vom Grad pn. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik pn” (독일어). 《Journal für Reine und Angewandte Mathematik》 176: 126–140. doi:10.1515/crll.1937.176.126. ISSN 0075-4102.
- Mézard, Ariane; Romagny, Matthieu; Tossici, Dajano. “Sekiguchi-Suwa theory revisited” (영어). arXiv:1104.2222. Bibcode:2011arXiv1104.2222M.
외부 링크
- “Cyclotomic extension” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Kummer extension” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Artin-Schreier theorem” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Kummer theory” (영어). 《nLab》.
- “Kummer sequence” (영어). 《nLab》.
- “Artin-Schreier sequence” (영어). 《nLab》.
- “Kummer-Artin-Schreier-Witt exact sequence” (영어). 《nLab》.
모듈:Authority_control 159번째 줄에서 Lua 오류: attempt to index field 'wikibase' (a nil value).
- CS1 - 영어 인용 (en)
- CS1 - 독일어 인용 (de)
- 스크립트 오류가 있는 문서
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 체론
- 대수적 수론
- 유체론