파프 방향
그래프 이론에서 파프 방향(Pfaff方向, 영어: Pfaffian orientation)은 그래프 위의 완벽 부합의 수를 쉽게 계산할 수 있게 하는 유향 그래프 구조이다.
정의
그래프 위의 유향 그래프 구조를 그래프의 방향(영어: orientation)이라고 한다. 의 방향은 부분 집합
로 표시된다.
홀수 순환
다음이 주어졌다고 하자.
만약 를 (시계 방향 또는 반시계 방향으로) 순회(巡廻)할 때, 와 일치하는 방향으로 순회되는 변이 홀수 개라면, 즉
이라면, 를 -홀수 순환(영어: -oddly oriented cycle)이라고 한다.
(의 길이가 짝수이므로, 의 순회 방향은 상관이 없다.)
부합의 부호
다음이 주어졌다고 하자.
이제, 의 원소들이 (임의의 순서로)
이라고 하자. 그렇다면, 의 -부호는 다음과 같다.
이 값은 의 원소들의 전순서에 의존하지 않지만, 물론 위의 전순서에는 의존한다.
파프 방향
다음이 주어졌다고 하자.
- 그래프
- 의 방향
이제, 위에 임의의 전순서를 부여하였을 때, 만약 위의 임의의 두 완벽 부합 , 에 대하여
이라면, 를 의 파프 방향이라고 한다.
보다 일반적으로, 다음이 주어졌다고 하자. 다음이 주어졌다고 하자.
- 유한 그래프
- 의 방향
- 유리수
만약 에 임의의 전순서를 부여하였을 때, 임의의 완벽 부합 에 대하여,
이라면,
를 위의 -파프 방향이라고 한다.
성질
완벽 부합의 수
유한 그래프 위의 -파프 방향 이 주어졌다고 하자. 그렇다면, 의 완벽 부합의 수
은 다음과 같다.
여기서
카스텔레인 방향
다음이 주어졌다고 하자.
그렇다면, 만약 다음 조건이 성립한다면, 를 카스텔레인 방향(Kasteleyn方向, 영어: Kasteleyn orientation)이라고 한다.
- 의 임의의 2-세포의 경계 은 -홀수 순환이다.
위의 카스텔레인 방향들은 위의 세타 지표, 즉 스핀 구조와 표준적으로 일대일 대응한다. 이에 따라, 위에는 개의 카스텔레인 방향들이 존재하며, 이들에 적절한
계수를 부여할 경우 이들은 -파프 방향을 이룬다.
특히, 일 경우, 임의의 평면 그래프 위의 카스텔레인 방향은 (1-)파프 방향을 이룬다. 이에 따라, 모든 평면 그래프는 파프 방향을 갖는다.
역사
피터르 빌럼 카스텔레인(네덜란드어: Pieter Willem Kasteleyn, 1924~1996)이 도입하였다. “파프 방향”이라는 용어는 요한 프리드리히 파프의 이름을 딴 것이다. 파프는 파피안을 도입하였는데, 파프 방향의 부호 인접 행렬의 파피안으로 완벽 부합의 수를 계산할 수 있기 때문에 이와 같은 이름이 붙었다.
참고 문헌
- Thomas, Robin (2007). 〈A survey of Pfaffian orientations of graphs〉 (PDF) (영어). 《Proceedings of the International Congress of Mathematicians, Madrid, August 22–30, 2006. Volume Ⅲ. Invited lectures》. 963–984쪽. doi:10.4171/022-3/47. ISBN 978-3-03719-022-7. Zbl 1101.05054.
- Cimasoni, David (2014). “The geometry of dimer models” (영어). 《Winter Braids Lecture Notes》 1: 2. arXiv:1409.4631. Bibcode:2014arXiv1409.4631C. doi:10.5802/wbln.3.
- Nguyen, Jeanette (2008년 5월 15일). 《Perfect matchings and Kasteleyn orientation》 (PDF) (영어). 학사 학위 논문 (지도 교수 Dion Gijswijt). 암스테르담 대학교. 2019년 1월 10일에 원본 문서 (PDF)에서 보존된 문서. 2017년 6월 28일에 확인함.
외부 링크
- Schwartz, Rich (2013년 4월 8일). “Kasteleyn’s formula for perfect matchings” (PDF) (영어).
- 영어 표기를 포함한 문서
- 네덜란드어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 그래프 이론
- 그래프 알고리즘
- 평면 그래프