3차원 직교군
3차원 직교군(三次元直交群, 영어: three-dimensional orthogonal group)은 3차원 유클리드 공간의 회전 및 반사로 구성되는 리 군이다.
정의
3차원 직교군 는 3×3 실수 직교 행렬들로 구성된 리 군이다.
다음과 같은 리 군들이 서로 동형이다.
- 3차원 특수직교군 . 3×3 실수 직교 행렬의 행렬식은 ±1이며, 이 가운데 행렬식이 +1인 것들은 의 부분군을 이룬다. 이 부분군을 라고 한다.
- 2차원 사영 특수 유니터리 군 .
- 3차원 사영 특수직교군 . 차원이 홀수이므로 사영 직교군은 특수직교군과 같다.
다음과 같은 리 군들이 서로 동형이다.
- 2차원 특수 유니터리 군 는 2×2 복소수 유니터리 행렬 가운데, 행렬식이 1인 것들로 구성된 리 군이다.
- 3차원 스핀 군
- 1차원 심플렉틱 군 . 이는 노름이 1인 사원수들의 곱셈군이다.
복소수 표현
다음과 같은 두 겹 피복이 존재한다.
즉, 는 3차원 스핀 군 과 동형이다. 이 피복 사상은 다음과 같다.
이는 다음과 같이 해석할 수 있다. 우선, 는 2차원 구 위에 등거리 사상으로 구성된 표준적인 충실한 표현을 가진다. 또한, 는 리만 구 로 해석할 수 있으며, 이 경우 구의 등거리 자기 동형은 리만 구 위의 뫼비우스 변환으로 나타내어진다. 즉, 다음과 같은 군의 매장이 존재한다.
이 경우, 의 상은 다음과 같은 꼴의 뫼비우스 변환들이다.
마찬가지로, 다음과 같은 군의 매장이 존재한다.
따라서, 이는 동형 를 정의한다.
사원수 표현
동형 은 다음과 같이 이해할 수 있다. 은 정의에 따라 노름이 1인 사원수들로 구성된다. 주어진 사원수에 대응하는 2×2 특수 유니터리 행렬은 다음과 같다.
마찬가지로, 두 겹 피복군 는 다음과 같이 이해할 수 있다.
이는 를 축으로 하여, 각도 만큼 회전하는 행렬이며, 여기서 각도 는 다음과 같다.
즉, 단위 사원수 집합을 4차원 극좌표계 로 나타내었을 때, 는 극각에 해당한다.. 이 경우, 사원수 와 가 같은 직교 행렬에 대응하므로, 이는 2겹 피복임을 알 수 있다.
이는 사원수 곱셈으로서 다음과 같이 나타낼 수 있다. 4차원 벡터 를 사원수 로 나타내자. 그렇다면, 4차원 회전 의 작용은 다음과 같이 생각할 수 있다. 각 의 원소를 단위 사원수 , 로 나타낸다면, 4차원 회전은 다음과 같다.
여기서 에 대한 몫군을 취하는 것은 와 가 같은 작용을 갖기 때문이다.
3차원 공간의 회전은 이 작용에서, 축의 안정자군이다. 축이 고정될 조건은 인 것이며, 따라서 이다. 즉, 의 작용은 다음과 같다.
여기서 에 대한 몫군을 취하는 것은 가 같은 작용을 갖기 때문이다.
리 대수
의 리 대수 의 기저는 무한소 3차원 회전 로 다음과 같이 주어진다.
는 번째 축에 대한 무한소 회전이며, 다음과 같은 구조 상수를 갖는다.
이 경우, 리 대수의 동형 는 구체적으로 다음과 같이 주어진다.
성질
대수학적 성질
의 중심은 이며, 이에 대하여 몫군을 취하면 를 얻는다.
SO(3) 또는 SU(2)의 유한 부분군은 ADE 분류를 갖는다.[1]:35, Theorem 11[2]:Theorem 4
위상수학적 성질
와 는 둘 다 콤팩트 연결 3차원 매끄러운 다양체이다.
는 위상수학적으로 3차원 초구 이다. (초구에 리 군의 구조를 줄 수 있는 경우는 0·1·3차원밖에 없다.) 이는 콤팩트 단일 연결 공간이다.
는 위상수학적으로 3차원 실수 사영 공간 이다. 여기서 에 대한 몫공간을 취하는 것은 대척점을 이어붙이는 것과 같다.
는 두 개의 연결 성분을 가진다. 이는 행렬식이 ±인 직교 행렬들로 구성된다.
표현론
의 유한 차원 표현은 차원에 따라 완전히 분류된다. 즉, 주어진 차원 에 대하여, (동형 아래) 유일한 차원 복소수 표현이 존재하며, 이는 유니터리 표현이다. 만약 이 짝수인 경우, 이는 차원 실수 표현으로 나타낼 수 있다. 양자역학에서, 차원 표현은 스핀 표현으로 일컬어진다.
의 유한 차원 표현들은 의 차원 표현들 가운데, 이 홀수인 것들이다. 예를 들어, 인 경우는 를 정의하는, 3차원 유클리드 공간 위의 특수 직교 행렬로서의 표현이다.
참고 문헌
- ↑ Rees, Elmer G. (1983). 《Notes on geometry》 (영어). Universitext. 베를린-뉴욕: Springer-Verlag. doi:10.1007/978-3-642-61777-5. ISBN 978-3-540-12053-7. ISSN 0172-5939. MR 0681482. Zbl 0498.51001.
- ↑ Keenan, Adam (2003년 9월 12일). “Which finite groups act freely on spheres?” (PDF) (영어). 《Department of Mathematics, The University of Utah》. 2005년 2월 22일에 원본 문서 (PDF)에서 보존된 문서.
외부 링크
- Weisstein, Eric Wolfgang. “Rotation matrix” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Improper rotation” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Trimble, Todd. “Notes on SU(2) reps” (영어).
- 이철희. “3차원 공간의 회전과 SO(3)”. 《수학노트》.
- 이철희. “Spin(3)”. 《수학노트》.
- 이철희. “3차원 유한회전군의 분류”. 《수학노트》.
같이 보기
- CS1 - 영어 인용 (en)
- 영어 표기를 포함한 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 리 군
- 3차원 회전