리우빌 정리 (복소해석학)
복소해석학에서 리우빌 정리(영어: Liouville's theorem)는 복소 평면 위의 유계 정칙 함수가 상수 함수라는 정리다.
정의
리우빌 정리에 따르면, 복소 평면 위의 함수 에 대하여, 다음 두 조건이 서로 동치이다.
증명
리우빌 정리는 테일러 급수 전개를 사용해 간단히 증명할 수 있다. 즉, 유계 함수의 경우, 테일러 급수의 계수가 (상수항을 제외하고) 모두 0이어야 한다는 것을 보이면 된다.
상수 함수가 유계 정칙 함수인 것은 자명하다. 반대로, 유계 정칙 함수 가 주어졌다고 하자. 이는 테일러 급수로
로 나타낼 수 있다. 그렇다면 임의의 양의 실수 에 대하여, 다음과 같은 부등식이 성립한다.
는 임의의 양의 실수이므로,
이다. 즉,
이며, 는 상수 함수이다.
따름정리
대수학의 기본정리
리우빌 정리를 사용해 대수학의 기본 정리를 쉽게 증명할 수 있다. 가 상수가 아닌 다항식이며, 근을 갖지 않는다고 하자. 차 다항식의 경우, 충분히 큰 에 대하여
이므로,
인 를 찾을 수 있다. 는 근을 갖지 않으므로, 는 복소 평면 위의 유계 정칙 함수이다. 따라서, 리우빌 정리에 의하여 는 상수 함수가 되는데, 이는 가정과 모순된다.
극점이 없는 타원 함수의 부재
리우빌 정리에 따라서, 극점이 없는 타원 함수는 상수 함수이다. 극점이 없는, 주기가 인 타원 함수는 콤팩트 집합 위에서 최댓값을 가져 유계 함수이므로, 리우빌 정리가 적용된다.
상수 함수가 아닌 복소 평면 위 정칙 함수의 상은 조밀
정칙 함수 의 상 은 하나의 점만을 포함하거나, 아니면 의 조밀 집합이다. 이 역시 리우빌 정리로부터 쉽게 증명할 수 있다. 만약 정칙 함수 에 대하여, 모든 에 대하여 항상 라고 하자. 그렇다면
는 복소 평면 위의 유계 정칙 함수이므로, 는 상수 함수이다.
일반화
피카르의 소정리는 서로 다른 둘 이상의 복소수를 함숫값으로 갖지 않는 모든 전해석 함수는 상수라는 내용이다. 즉 모든 복소수 에 대해 , 인 서로 다른 두 복소수 가 존재하면 는 반드시 상수이어야 한다. 이 정리는 리우빌 정리를 함의한다.
역사
리우빌 정리는 1844년에 오귀스탱 루이 코시가 최초로 증명하였다.[1][2]
1847년에 조제프 리우빌이 극점이 없는 타원 함수가 상수 함수임을 증명하였다.[3] 이는 오늘날 "리우빌 정리"라고 일컬어지는 결과의 따름정리다.
같이 보기
각주
- ↑ Cauchy, Augustin-Louis (1844). 〈Mémoires sur les fonctions complémentaires〉 (프랑스어). 《Œuvres complètes d’Augustin Cauchy, sér. 1, vol. 8》. Paris: Gauthiers-Villars (1882에 출판됨). doi:10.1017/CBO9780511702365.055.
- ↑ Lützen, Jesper (1990). 《Joseph Liouville 1809–1882: master of pure and applied mathematics》 (영어). Studies in the History of Mathematics and Physical Sciences 15. Springer. ISBN 3-540-97180-7.
- ↑ Liouville, Joseph (1879). “Leçons sur les fonctions doublement périodiques faites en 1847 par M. J. Liouville” (프랑스어). 《Journal für die Reine und Angewandte Mathematik》 88: 277–310. doi:10.1515/crll.1880.88.277. ISSN 0075-4102. 2012년 7월 11일에 원본 문서에서 보존된 문서. 2014년 11월 5일에 확인함.
- Greene, Robert E.; Steven G. Krantz. 《Function theory of one complex variable》 3판 (영어). Graduate Studies in Mathematics 40. ISBN 978-0-8218-3962-1. MR 2215872. Zbl 1114.30001.
외부 링크
- Weisstein, Eric Wolfgang. “Liouville's boundedness theorem” (영어). 《Wolfram MathWorld》. Wolfram Research.
- CS1 - 프랑스어 인용 (fr)
- CS1 - 영어 인용 (en)
- 영어 표기를 포함한 문서
- 인용 오류 - 오래된 변수를 사용함
- CS1 관리 - 추가 문구
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 복소해석학 정리