내적 공간
선형대수학과 함수해석학에서 내적 공간(內積空間, 영어: inner product space)은 두 벡터의 쌍에 스칼라를 대응시키는 일종의 함수가 주어진 벡터 공간이다. 내적 공간 위에서는 벡터의 길이나 각도 등의 개념을 다룰 수 있다. 스칼라곱을 갖춘 유클리드 공간의 일반화이다.
정의
-벡터 공간 위의 내적(內積, 영어: inner product)은 양의 정부호 에르미트 반쌍선형 형식이다. (실수의 경우 이는 양의 정부호 대칭 쌍선형 형식과 같다.) 즉, 다음 조건들을 만족시키는 함수
이다.
이들 성질로부터 내적의 다음과 같은 성질을 유도할 수 있다.
- (오른쪽 반쌍선형성) 임의의 및 에 대하여,
내적이 주어진 -벡터 공간 을 -내적 공간이라고 한다. 특히 인 경우, 즉 복소수체 위의 내적 공간은 유니터리 공간(영어: unitary space)이라고 부르기도 한다.
성질
노름 구조
-내적 공간 위에 자연스러운 -노름 공간 구조를 다음과 같이 줄 수 있다.
증명:
노름의 양의 정부호성과 양의 동차성은 내적의 정의에 따라 자명하다. 노름의 삼각 부등식은 코시-슈바르츠 부등식의 따름정리이며, 그 증명은 다음과 같다. 임의의 벡터 에 대하여,
이므로,
반대로, -노름 공간이 -내적 공간으로부터 유도될 필요충분조건은 평행 사변형 법칙
이다. 이 경우, 가능한 유일한 내적은 다음과 같으며, 이를 극화 항등식(極化恒等式, 영어: polarization identity)이라고 한다.
증명:
실수 내적 공간의 경우만을 증명하자. 극화 항등식이 정의한 내적이 다음 네 가지를 보이는 것으로 족하다.
첫째와 둘째 조건은 자명하다. 셋째 조건은 다음과 같이 증명된다.
넷째 조건의 의 경우는 다음과 같이 증명된다.
또한, 일 경우의 증명은 다음과 같다.
만약 일 경우, ()이라고 하자. 그렇다면, 다음과 같이 증명된다.
마지막으로, 일 경우는 를 고정하였을 때 가 연속 함수임에 따라 성립한다.
코시-슈바르츠 부등식
내적 공간 의 벡터 에 대하여, 다음과 같은 부등식이 성립하며, 이를 코시-슈바르츠 부등식이라고 한다.
이에 따라, 두 벡터 사이의 각도를 다음과 같이 정의할 수 있다.
또한, 내적이 유도하는 노름의 삼각 부등식은 코시-슈바르츠 부등식을 통해 증명된다.
정규 직교 기저
내적 공간 의 정규 직교 기저(正規直交基底, 영어: orthonormal basis)는 서로 다른 두 벡터의 내적이 항상 0인 단위 벡터들이 이루는 기저이다. 즉, 이는 다음 조건들을 만족시키는 기저 이다.
- (직교성) 만약 이며 라면,
- (정규성) 임의의 에 대하여,
유한 차원 내적 공간의 정규 직교 기저는 항상 존재한다. 이는 그람-슈미트 과정을 통해 구성할 수 있다.
내적 공간 의 벡터 의 정규 직교 기저 에 대한 좌표는 다음과 같다.
또한, 이 좌표 아래 내적을 다음과 같이 나타낼 수 있다.
내적 공간 속의 유한 정규 직교 집합 및 벡터 에 대하여, 베셀 부등식과 유사한 꼴의 다음과 같은 부등식이 성립한다.
선형 범함수
유한 차원 내적 공간 의 모든 선형 범함수는 어떤 유일한 고정된 벡터 와의 내적
이다. 구체적으로, 정규 직교 기저 가 주어졌을 때, 선형 범함수 를 나타내는 벡터는 다음과 같다.
이에 따라, 유한 차원 내적 공간의 선형 변환 의 수반 선형 변환 은 다음과 같이 항상 존재한다.
그러나 무한 차원 내적 공간의 경우 일반적으로 성립하지 않는다. 예를 들어, 다항식환 에 다음과 같은 내적을 정의할 수 있다.
이 경우, 임의의 가 주어졌을 때, 다음과 같은 선형 범함수는 고정된 벡터와의 내적으로 나타낼 수 없다.
또한 미분 선형 변환
의 수반 선형 변환은 존재하지 않는다.
예
유한 차원 벡터 공간 위의 내적
차원 -벡터 공간 위의 표준적인 내적은 다음과 같다.
일 때, 은 유클리드 공간이며, 이 내적은 스칼라곱이라고 부른다. 이 경우 실수의 켤레 복소수는 스스로와 일치한다 (). 이 내적이 유도하는 노름은 L2 노름이다. 그러나 의 경우, Lp 노름은 평행 사변형 법칙을 만족시키지 않으므로 내적으로부터 유도될 수 없다.
특히, 인 경우 는 1차원 벡터 공간이며, 위 내적은 단순히
이다.
마찬가지로, 실수 또는 복소수 성분 행렬들의 집합 은 차원 벡터 공간을 이룬다. 이 위에 다음과 같은 내적을 정의할 수 있다.
이를 프로베니우스 내적이라고 한다.
보다 일반적으로, 양의 정부호 행렬 에 대하여, 위에 다음과 같은 내적을 정의할 수 있다.
함수 공간
연속 함수의 공간 에는 다음과 같은 내적을 정의할 수 있다.
여기서 우변의 적분은 리만 적분이다. 또한, 다음과 같은 내적을 정의할 수도 있다.
가측 함수 들의 (거의 어디서나 같음에 대한) 동치류들로 구성된 -벡터 공간 위에 다음과 같은 내적을 정의할 수 있다.
여기서 우변은 르베그 적분이다. 이를 L2 공간이라고 한다. 특히, 가 확률 공간일 때, 은 확률 변수들의 동치류들로 이루어지며, 적분은 기댓값이다. 따라서, 두 확률 변수 의 내적은 다음과 같다.
가측 함수나 확률 변수의 동치류를 취하는 것은 내적을 양의 정부호적이게 만들기 위함이다. 예를 들어, 일 필요충분조건은 거의 확실하게 인 것이다 (). 따라서, 스스로와의 내적이 0인 경우가 0밖에 없으려면 거의 어디서나 같은 함수들을 하나의 동치류로 뭉뚱그려야 한다.
같이 보기
참고 문헌
- Hoffman, Kenneth; Kunze, Ray (1971). 《Linear algebra》 2판 (영어). Englewood Cliffs, N. J.: Prentice-Hall. ISBN 0-13-536797-2. MR 0276251. Zbl 0212.36601. Internet Archive LinearAlge(…).
외부 링크
- “Inner product” (영어). 《Encyclopedia of Mathematics》. Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Inner product space” (영어). 《Wolfram MathWorld》. Wolfram Research.
- Weisstein, Eric Wolfgang. “Inner product” (영어). 《Wolfram MathWorld》. Wolfram Research.
- “Inner product space” (영어). 《PlanetMath》.
- “Inner product” (영어). 《PlanetMath》.
- “Inner product space” (영어). 《nLab》.
- “Norms Induced by Inner Products and the Parallelogram Law” (영어). 《Stack Exchange》. 2018년 2월 3일에 원본 문서에서 보존된 문서. 2018년 2월 2일에 확인함.
- 잘못된 파일 링크가 포함된 문서
- 영어 표기를 포함한 문서
- CS1 - 영어 인용 (en)
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 노름 공간