L∞-대수
수학에서 L∞-대수(L∞-algebra) 또는 호모토피 리 대수(영어: homotopy Lie algebra)는 등급을 갖는 대수이다.[1][2][3] 리 대수의 개념에서, 야코비 항등식이 오직 호모토피에 대하여 성립하도록 약화시킨 것이다.
정의
괄호를 통한 정의
표수 0의 체 가 주어졌다고 하자. 위의 초벡터 공간 이 주어졌을 때, 다음을 정의하자.
여기서 는 텐서 대수 의, 다음 부분 집합으로 생성되는 아이디얼이다.
여기서
물론 는 자연수 등급을 갖는다.
위의 L∞-대수 는 다음과 같은 일련의 연산이 주어진, 위의 -등급 벡터 공간
이다.
- 각 에 대하여, 등급 반대칭 항 연산 . 그 등급은 이다. (즉, 2항 괄호의 등급이 0이며, 1항 괄호는 등급 −1의 미분을 이룬다.)
이는 다음과 같은 야코비 항등식을 만족시켜야 한다.
여기서
- 는 -셔플 순열의 집합이다.
- 는 순열 가 홀수 등급을 갖는 원소쌍을 서로 짝수 번 뒤바꾸었을 때 , 홀수 번 뒤바꾸었을 때 이다. 이를 코쥘 부호(영어: Koszul sign)라고 한다.
미분 등급 대수를 통한 정의
만약 각 등급별 차원이 유한하다면, L∞-대수는 다음과 같이 정의될 수도 있다.
표수 0의 체 위의 위의 호모토피 리 대수는 다음과 같은 데이터로 주어진다.
- 위의 양의 정수 등급 벡터 공간 . 이로부터 다음을 정의할 수 있다.
- 는 위의, 등급 +1의 연속 미분이다. 즉, 다음 조건들을 만족시킨다.
- 는 -선형 변환이다.
- 이다. 여기서 는 동차 성분이다.
- . 여기서 는 동차 성분이다.
이는 다음 조건을 추가로 만족시켜야 한다.
(만약 이 조건을 생략한다면, 굽은 L∞-대수영어: curved L∞-algebra의 개념을 얻는다.)
두 정의 사이의 관계
이 두 정의 사이의 관계는 다음과 같다. 우선, 괄호 를 통한 정의에서, 의 임의의 기저
를 잡자. 그 쌍대 기저는
이며, 또한
로 놓자. 그렇다면,
이다. 이 경우, 멱영 조건
을 전개하고 등급별로 분해하면, 괄호에 대한 조건들과 동치임을 알 수 있다.
예
미분 등급 리 대수
L∞-대수 에서, 만약 오직 2항 이하 괄호만이 0이 아닌 경우, 이는 미분 등급 리 대수를 이룬다. 즉, 이 경우
로 놓으면, 가 만족시켜야 하는 항등식들은 미분 등급 리 대수의 정의와 일치한다. 즉, 3항 이상의 괄호들이 모두 0이라면, 2항 괄호의 야코비 항등식이 정확히 성립한다.
특히, 만약 추가로 일 경우, 이는 등급 리 초대수를 이루며, 만약 모든 등급이 짝수라면 이는 등급 리 대수를 이룬다.
리 -대수
L∞-대수에서, 모든 생성원의 등급이 에 속하는 경우를 리 -대수라고 한다. 이 경우,
이므로,
이다.
예를 들어, 일 경우, 오직 1항 · 2항 · 3항 연산만이 자명하지 않다.
특히, 인 경우, 1항 연산 또한 등급에 의하여 0이 되므로, 이 개념은 리 대수의 개념과 동치이다.
거스틴해버 대수
모든 거스틴해버 대수는 L∞-대수를 이룬다.
같이 보기
각주
- ↑ Lada, Tom; Jim Stasheff. “Introduction to sh Lie algebras for physicists” (영어). 《International Journal of Theoretical Physics》 32 (7): 1087–1103. arXiv:hep-th/9209099. Bibcode:1993IJTP...32.1087L. doi:10.1007/BF00671791. ISSN 0020-7748.
- ↑ Lada, Tom (1994년 6월 15일). “Strongly homotopy Lie algebras” (영어). arXiv:hep-th/9406095. Bibcode:1994hep.th....6095L.
- ↑ Bering, Klaus; Tom Lada (2009년 9월 17일). “Examples of Homotopy Lie Algebras” (영어). arXiv:0903.5433.
외부 링크
- “L-infinity-algebra” (영어). 《nLab》.
- “Super L-infinity algebra” (영어). 《nLab》.
- 인용 오류 - 오래된 변수를 사용함
- CS1 - 영어 인용 (en)
- 인용 오류 - 지원되지 않는 변수 무시됨
- 영어 표기를 포함한 문서
- 잘못된 파일 링크가 포함된 문서
- 위키데이터 속성 P18을 사용하는 문서
- 위키데이터 속성 P41을 사용하는 문서
- 위키데이터 속성 P94를 사용하는 문서
- 위키데이터 속성 P117을 사용하는 문서
- 위키데이터 속성 P154를 사용하는 문서
- 위키데이터 속성 P213을 사용하는 문서
- 위키데이터 속성 P227을 사용하는 문서
- 위키데이터 속성 P242를 사용하는 문서
- 위키데이터 속성 P244를 사용하는 문서
- 위키데이터 속성 P245를 사용하는 문서
- 위키데이터 속성 P268을 사용하는 문서
- 위키데이터 속성 P269를 사용하는 문서
- 위키데이터 속성 P271을 사용하는 문서
- 위키데이터 속성 P347을 사용하는 문서
- 위키데이터 속성 P349를 사용하는 문서
- 위키데이터 속성 P350을 사용하는 문서
- 위키데이터 속성 P373을 사용하는 문서
- 위키데이터 속성 P380을 사용하는 문서
- 위키데이터 속성 P396을 사용하는 문서
- 위키데이터 속성 P409를 사용하는 문서
- 위키데이터 속성 P428을 사용하는 문서
- 위키데이터 속성 P434를 사용하는 문서
- 위키데이터 속성 P435를 사용하는 문서
- 위키데이터 속성 P436을 사용하는 문서
- 위키데이터 속성 P454를 사용하는 문서
- 위키데이터 속성 P496을 사용하는 문서
- 위키데이터 속성 P549를 사용하는 문서
- 위키데이터 속성 P650을 사용하는 문서
- 위키데이터 속성 P651을 사용하는 문서
- 위키데이터 속성 P691을 사용하는 문서
- 위키데이터 속성 P716을 사용하는 문서
- 위키데이터 속성 P781을 사용하는 문서
- 위키데이터 속성 P791을 사용하는 문서
- 위키데이터 속성 P864를 사용하는 문서
- 위키데이터 속성 P865를 사용하는 문서
- 위키데이터 속성 P886을 사용하는 문서
- 위키데이터 속성 P902를 사용하는 문서
- 위키데이터 속성 P906을 사용하는 문서
- 위키데이터 속성 P947을 사용하는 문서
- 위키데이터 속성 P950을 사용하는 문서
- 위키데이터 속성 P966을 사용하는 문서
- 위키데이터 속성 P982를 사용하는 문서
- 위키데이터 속성 P1003을 사용하는 문서
- 위키데이터 속성 P1004를 사용하는 문서
- 위키데이터 속성 P1005를 사용하는 문서
- 위키데이터 속성 P1006을 사용하는 문서
- 위키데이터 속성 P1015를 사용하는 문서
- 위키데이터 속성 P1045를 사용하는 문서
- 위키데이터 속성 P1048을 사용하는 문서
- 위키데이터 속성 P1053을 사용하는 문서
- 위키데이터 속성 P1146을 사용하는 문서
- 위키데이터 속성 P1153을 사용하는 문서
- 위키데이터 속성 P1157을 사용하는 문서
- 위키데이터 속성 P1186을 사용하는 문서
- 위키데이터 속성 P1225를 사용하는 문서
- 위키데이터 속성 P1248을 사용하는 문서
- 위키데이터 속성 P1273을 사용하는 문서
- 위키데이터 속성 P1315를 사용하는 문서
- 위키데이터 속성 P1323을 사용하는 문서
- 위키데이터 속성 P1330을 사용하는 문서
- 위키데이터 속성 P1362를 사용하는 문서
- 위키데이터 속성 P1368을 사용하는 문서
- 위키데이터 속성 P1375를 사용하는 문서
- 위키데이터 속성 P1407을 사용하는 문서
- 위키데이터 속성 P1556을 사용하는 문서
- 위키데이터 속성 P1584를 사용하는 문서
- 위키데이터 속성 P1695를 사용하는 문서
- 위키데이터 속성 P1707을 사용하는 문서
- 위키데이터 속성 P1736을 사용하는 문서
- 위키데이터 속성 P1886을 사용하는 문서
- 위키데이터 속성 P1890을 사용하는 문서
- 위키데이터 속성 P1907을 사용하는 문서
- 위키데이터 속성 P1908을 사용하는 문서
- 위키데이터 속성 P1960을 사용하는 문서
- 위키데이터 속성 P1986을 사용하는 문서
- 위키데이터 속성 P2041을 사용하는 문서
- 위키데이터 속성 P2163을 사용하는 문서
- 위키데이터 속성 P2174를 사용하는 문서
- 위키데이터 속성 P2268을 사용하는 문서
- 위키데이터 속성 P2349를 사용하는 문서
- 위키데이터 속성 P2418을 사용하는 문서
- 위키데이터 속성 P2456을 사용하는 문서
- 위키데이터 속성 P2484를 사용하는 문서
- 위키데이터 속성 P2558을 사용하는 문서
- 위키데이터 속성 P2750을 사용하는 문서
- 위키데이터 속성 P2980을 사용하는 문서
- 위키데이터 속성 P3223을 사용하는 문서
- 위키데이터 속성 P3233을 사용하는 문서
- 위키데이터 속성 P3348을 사용하는 문서
- 위키데이터 속성 P3372를 사용하는 문서
- 위키데이터 속성 P3407을 사용하는 문서
- 위키데이터 속성 P3430을 사용하는 문서
- 위키데이터 속성 P3544를 사용하는 문서
- 위키데이터 속성 P3562를 사용하는 문서
- 위키데이터 속성 P3563을 사용하는 문서
- 위키데이터 속성 P3601을 사용하는 문서
- 위키데이터 속성 P3723을 사용하는 문서
- 위키데이터 속성 P3788을 사용하는 문서
- 위키데이터 속성 P3829를 사용하는 문서
- 위키데이터 속성 P3863을 사용하는 문서
- 위키데이터 속성 P3920을 사용하는 문서
- 위키데이터 속성 P3993을 사용하는 문서
- 위키데이터 속성 P4038을 사용하는 문서
- 위키데이터 속성 P4055를 사용하는 문서
- 위키데이터 속성 P4114를 사용하는 문서
- 위키데이터 속성 P4143을 사용하는 문서
- 위키데이터 속성 P4186을 사용하는 문서
- 위키데이터 속성 P4423을 사용하는 문서
- 위키데이터 속성 P4457을 사용하는 문서
- 위키데이터 속성 P4534를 사용하는 문서
- 위키데이터 속성 P4535를 사용하는 문서
- 위키데이터 속성 P4581을 사용하는 문서
- 위키데이터 속성 P4613을 사용하는 문서
- 위키데이터 속성 P4955를 사용하는 문서
- 위키데이터 속성 P5034를 사용하는 문서
- 위키데이터 속성 P5226을 사용하는 문서
- 위키데이터 속성 P5288을 사용하는 문서
- 위키데이터 속성 P5302를 사용하는 문서
- 위키데이터 속성 P5321을 사용하는 문서
- 위키데이터 속성 P5368을 사용하는 문서
- 위키데이터 속성 P5504를 사용하는 문서
- 위키데이터 속성 P5587을 사용하는 문서
- 위키데이터 속성 P5736을 사용하는 문서
- 위키데이터 속성 P5818을 사용하는 문서
- 위키데이터 속성 P6213을 사용하는 문서
- 위키데이터 속성 P6734를 사용하는 문서
- 위키데이터 속성 P6792를 사용하는 문서
- 위키데이터 속성 P6804를 사용하는 문서
- 위키데이터 속성 P6829를 사용하는 문서
- 위키데이터 속성 P7293을 사용하는 문서
- 위키데이터 속성 P7303을 사용하는 문서
- 위키데이터 속성 P7314를 사용하는 문서
- 위키데이터 속성 P7902를 사용하는 문서
- 위키데이터 속성 P8034를 사용하는 문서
- 위키데이터 속성 P8189를 사용하는 문서
- 위키데이터 속성 P8381을 사용하는 문서
- 위키데이터 속성 P8671을 사용하는 문서
- 위키데이터 속성 P8980을 사용하는 문서
- 위키데이터 속성 P9070을 사용하는 문서
- 위키데이터 속성 P9692를 사용하는 문서
- 위키데이터 속성 P9725를 사용하는 문서
- 위키데이터 속성 P9984를 사용하는 문서
- 위키데이터 속성 P10020을 사용하는 문서
- 위키데이터 속성 P10299를 사용하는 문서
- 위키데이터 속성 P10608을 사용하는 문서
- 위키데이터 속성 P10832를 사용하는 문서
- 위키데이터 속성 P11249를 사용하는 문서
- 위키데이터 속성 P11646을 사용하는 문서
- 위키데이터 속성 P11729를 사용하는 문서
- 위키데이터 속성 P12204를 사용하는 문서
- 위키데이터 속성 P12362를 사용하는 문서
- 위키데이터 속성 P12754를 사용하는 문서
- 위키데이터 속성 P13049를 사용하는 문서
- 대수 구조
- 호모토피 이론